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Abstract
Node centrality measures are important in a large number of
graph applications, from search and ranking to social and
biological network analysis. In this paper we study node
centrality for very large graphs, up to billions of nodes and
edges. Various definitions for centrality have been proposed,
ranging from very simple (e.g., node degree) to more elab-
orate. However, measuring centrality in billion-scale graphs
poses several challenges. Many of the “traditional” defini-
tions such as closeness and betweenness were not designed
with scalability in mind. Therefore, it is very difficult, if
not impossible, to compute them both accurately and effi-
ciently. In this paper, we propose centrality measures suit-
able for very large graphs, as well as scalable methods to
effectively compute them. More specifically, we propose
effective closeness and LINERANK which are designed for
billion-scale graphs. We also develop algorithms to compute
the proposed centrality measures in MAPREDUCE, a mod-
ern paradigm for large-scale, distributed data processing. We
present extensive experimental results on both synthetic and
real datasets, which demonstrate the scalability of our ap-
proach to very large graphs, as well as interesting findings
and anomalies.

1 Introduction
Centrality is widely-used for measuring the relative impor-
tance of nodes within a graph [5, 12]. For example, who
are the most well-connected people in a social network? Or
who are critical for facilitating the transmission of informa-
tion in a terrorist network [21]? Which proteins are the most
important for the lethality of a cell in protein interactions bi-
ological network [16]? In general, the concept of centrality
has played an important role in the understanding of vari-
ous kinds of networks by researchers from computer science,
network science, sociology, and recently emerging ‘compu-
tational social science’ [23].

Traditionally, centrality has typically been studied for
graphs of relatively small size. However, in the past few
years, the proliferation of digital collection of data has led to
the collection of very large graphs, such as the web, online
social networks, user preferences, online communications,
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and so on. Many of these networks reach billions of nodes
and edges requiring terabytes of storage.

1.1 Challenges for Large Scale Centralities Measuring
centrality in very large graphs poses two key challenges.

First, some definitions of centrality have inherently high
computational complexity. For example, shortest-path or
random walk betweenness [6, 25] have complexity at least
O(n3) where n is the number of nodes in a graph. Further-
more, some of the faster estimation algorithms require oper-
ations, which are not amenable to parallelization, such as all-
sources breadth-first search. Finally, it may not be straight-
forward or even possible to develop accurate approximation
schemes. In summary, centrality measures should ideally be
designed with scalability in mind from the outset. Tradition-
ally, this has not always been the case [12]. However, with
the recent availability of very large networks, there is a clear
need for scalable measures.

Second, even if a centrality measure is designed in a
way that avoids expensive or non-parallelizable operations,
developing algorithms that are both efficient, scalable, and
accurate is not straightforward. Clever approximation or
parallelization schemes may need to be employed, in order
to achieve all of these goals.

1.2 Problem Definitions In this paper we tackle the prob-
lem of efficiently and effectively measuring centrality for
billion-scale networks. More specifically, we address the fol-
lowing problems:

1. Careful Design. How can we carefully design central-
ity measures that avoid inherent limitations to scalabil-
ity and parallelization, yet are sufficiently informative?

2. Algorithms. How can we compute the large scale cen-
tralities quickly for billion-scale graphs? How can we
leverage modern, large-scale, distributed data process-
ing infrastructures?

3. Observations. What are key patterns and observations
on centralities in large, real world networks?

In particular, we study popular definitions for three types
of centrality: degree (baseline), closeness (diameter-based),
and betweenness (flow-based), which cover the spectrum
from simpler to more elaborate. Except for degree, the



other two centrality measures, closeness and betweenness,
are prohibitively expensive to compute, and thus impractical
for large networks. On the other hand, although simple to
compute, degree centrality gives limited information since
it is based on a highly local view of the graph around each
node. We need a set of centrality measures that enrich our
understanding of very large networks, and are tractable to
compute.

1.3 Our Contributions To address the difficulty of com-
puting centralities on large-scale graphs, we propose two
new measures, one diameter-based and one flow-based, re-
spectively.

The first measure we propose is the effective closeness of
a node, which approximates the average shortest path length
starting from the node in question. We employ sketches and
MAPREDUCE [9] in order to make its computation tractable.

The second measure we propose is LINERANK, which
intuitively measures the “flow” through a node. Our notion
of “flow” is derived by finding the stationary probabilities of
a random walk on the line graph of the original matrix and
then aggregating the flows on each node1. In addition, we
extend the line graph to weighted graphs as well as directed
graphs. The advantage of this approach is that the stationary
probabilities can be efficiently computed in a distributed
setting through MAPREDUCE. However, materialization of
the line graph is prohibitively expensive in terms of space.
We show that we can decompose the computation in a way
that uses a much sparser matrix than the original line graph,
thus making the entire computation feasible.

Finally, we analyze the centralities in large, real-world
networks with these new centrality algorithms to find impor-
tant patterns.

In summary, the main contributions in this paper are the
following:

1. Careful Design. We propose two new large-scale cen-
tralities: effective closeness, a diameter-based central-
ity, and LINERANK, a flow-based centrality. Both are
carefully designed with billion-scale networks in mind
from the beginning.

2. Algorithms. We develop efficient parallel algorithms
to compute effective closeness and LINERANK on
MAPREDUCE by using approximation and efficient line
graph decomposition of billion scale graphs. We per-
form experiments to show that both of our proposed
centralities have linear scale-up on the number of edges
and machines.

3. Observations. Using our large-scale centralities, we
analyze real-world graphs including YahooWeb, Enron
and DBLP. We report important patterns including high

1See Section 4 for the formal definition of line graph.

effective closeness for high degree nodes, the distin-
guishing ability of effective closeness for low degree
nodes, and the ability of LINERANK for discriminating
relatively high degree nodes.

Symbol Definition
n number of nodes in a graph
m number of edges in a graph
A adjacency matrix of a graph

indeg(v) in-degree of node v
outdeg(v) out-degree of node v
N(r, v) number of neighbors of node v within r steps
G original graph

L(G) line graph of the original graph G
S(G) source incidence matrix of the graph G
T (G) target incidence matrix of the graph G

Table 1: Table of symbols

The rest of the paper is organized as follows: Section 2
presents related work on node centrality. In Section 3 we
define our proposed large scale centralities. In Section 4
we develop scalable algorithms to efficiently and effectively
evaluate those measures. Section 5 presents scalability and
accuracy results on synthetic and real data sets. After
showing patterns and observations of centralities in large,
real world graphs in Section 6, we conclude the paper in
Section 7. Table 1 lists the symbols used in this paper.

2 Related Work
Related work forms two groups: centrality measures on
graphs and parallel graph mining using HADOOP.

2.1 Centrality Measures on Graphs Centrality has at-
tracted a lot of attentions as a tool for studying various kinds
of networks including social, information, and biological
networks [12, 5, 16]. The centrality of a node in a network
is interpreted as the importance of the node. Many centrality
measures have been proposed based on how the importance
is defined.

In this section, we discuss various centrality measures
around the three main centrality groups [12, 5] which repre-
sent distinguished types of walks.

Degree related measures. The first group of the cen-
trality measures is the degree related measures. The degree
centrality, the simplest yet the most popular centrality mea-
sure, belongs to this group. The degree centrality cDEGi of
node i is defined to be the degree of the node.

A way of interpreting the degree centrality is that it
counts the number of paths of length 1 that emanate from a
node. A generalization of the degree centrality is theK-path
centrality which is the number of paths less than or equal to
k that emanate from a node. Several variations of the K-
path centrality exist based on the type of the path: geodesic,



edge-disjoint, vertex-disjoint K-path are among them [5].
Another line of centralities are based on the ‘walk’ on

the graph. The Katz centrality [20] counts the number of
walks starting from a node, giving penalties to longer walks.
In a mathematical form, the Katz centrality cKATZi of node
i is defined by cKATZi = eTi (

∑∞
j=1(βA)j)1 where ei is a

column vector whose ith element is 1, and all other elements
are 0. The β is a positive penalty constant to control the
weight on the walks of different length. A slight variation of
the Katz measure is the Bonacich centrality [4] which allows
the negative β. The Bonacich centrality cBONi of node i
is defined to be cBONi = eTi ( 1

β

∑∞
j=1(βA)j)1 where the

negative weight allows to subtract the even-numbered walks
from the odd-numbered walks which have an interpretation
in exchange networks [5]. The Katz and the Bonacich
centralities are special cases of the Hubbell centrality [15].
The Hubbell centrality cHUBi of node i is defined to be
cHUBi = eTi (

∑∞
j=0X

j)y where X is a matrix and y is a
vector. It can be shown that X = βA and y = βA1 lead
to the Katz centrality, and X = βA and y = A1 lead to the
Bonacich centrality.

Except for degree, most of variations require some
parameter, which may not be easy to determine in real
networks. Also computationally, degree is the only one that
can be efficiently measured for large networks, which will be
served as the baseline measure in this paper.

Diameter related measures. The second group of the
centrality measures is diameter related measures, which
count the length of the walks. The most popular central-
ity measure in this group is the Freeman’s closeness central-
ity [12]. It measures the centrality by computing the average
of the shortest distances to all other nodes. Let S be the ma-
trix whose (i, j)th element contains the length of the shortest
path from node i to j. Then, the closeness centrality cCLOi

of node i is defined to be cCLOi = eTi S1.
As we will see in Section 6, diameter-based measures

are effective in differentiating low degree nodes. However,
the existing diameter based measure does not scale up and
therefore efficient computational method needs to be devel-
oped, which is one of the focus in this paper.

Flow related measures The last group of the centrality
measures is the flow related measures. It is called ‘flow
related’ since the information flowing through edges are
considered. The most well-known centrality in this group is
the Freeman’s betweenness centrality [12]. It measures how
much a given node lies in the shortest paths of other nodes.
Let bjk is the number of shortest paths from node j to k, and
bjik be the number of shortest paths from node j to k that
passes through node i. The betweenness centrality cBETi

of node i is defined to be cBETi =
∑
j,k

bjik
bjk

. The naive
algorithm for computing the betweenness involves all-pair
shortest paths which require Θ(n3) time and Θ(n2) storage.
Brandes [6] made a faster algorithm by running n single-

source-shortest-path algorithms which require O(n + m)
space and run in O(nm) and O(nm + n2 log n) time on
unweighted and weighted networks, respectively, where n
is the number of nodes and m is the number of edges in a
graph.

Newman [25] proposed an alternative betweenness cen-
trality based on random walks on the graph. The main idea is
that instead of considering shortest paths, it considers all pos-
sible walks and compute the betweenness from them. Specif-
ically, let R be the matrix whose (j, k)th element Rjk con-
tains the probability of a random walk, starting from j with
the absorbing node k, passing through the node i. Then, the
Newman’s betweenness centrality cNBEi of node i is defined
to be cNBEi =

∑
j 6=i 6=k Rjk. Computing the Newman’s

betweenness centrality requires O(mn2) time which is pro-
hibitively expensive.

None of the existing flow related measures are scalable
to large networks. In this paper, we propose LINERANK, a
new flow-based measure scalable to large networks.

2.2 Parallel Graph Mining using HADOOP MAPRE-
DUCE is a distributed programming framework [10] for pro-
cessing web-scale data. MAPREDUCE has two benefits: (a)
The data distribution, replication, fault-tolerance, and load
balancing is handled automatically; and furthermore (b) it
uses the familiar concept of functional programming. The
programmer needs to define only two functions, a map and
a reduce. The general framework is as follows [22]: (a) the
map stage reads the input file and emits (key, value) pairs;
(b) the shuffling stage sorts the output and distributes them
to reducers; (c) the reduce stage processes the values with
the same key and emits another (key, value) pairs which be-
come the final result.

HADOOP [1] is the open source equivalent of MAPRE-
DUCE. HADOOP uses its own distributed file system HDFS,
and provides a high-level language called PIG [26]. Due
to its excellent scalability, ease of use, and cost advantage,
HADOOP has been used for important graph mining algo-
rithms (see [27, 19, 18, 17]). Other variants which provide
advanced MAPREDUCE-like systems include SCOPE [7],
Sphere [14], and Sawzall [28].

3 Large-scale Centrality Measures
In this section, we propose centrality measures which are de-
signed for large-scale, distributed computation. We first re-
view well-known centrality measures and analyze the com-
putations required. While some centralities are easier to
compute, others suffer from inherent limitations in achieving
scalability, as explained in Section 2. We propose alternative
centrality measures that follow similar motivation and intu-
ition as existing measures, but are much more suitable for
distributed computation on very large graphs.

Following the classification of centralities in Section 2,



we focus on the three most common and representative
types of centrality measures: degree (local), diameter-based
(closeness), and flow-based (betweenness).

3.1 Degree Degree centrality has a very simple and intu-
itive definition: it is the number of neighbors of a node. De-
spite, or perhaps because of its simplicity, it is very popular
and used extensively. Not surprisingly, it is also the easiest
to compute. The degree centrality vector CDEG of a graph
with an adjacency matrix A can be represented in matrix-
vector multiplication form by
(3.1) CDEG = A1.
Thus, the degree centrality of a large network can be exactly
computed by a large scale matrix-vector multiplication. The
major limitation of degree based centrality is that it only cap-
tures the local information of a node. In many applications,
we need more informative measures that can further distin-
guish among nodes that have almost equally low degrees, or
almost equally high degrees (see Section 6).

3.2 Diameter-based Measures Closeness centrality is the
most popular diameter-based centrality measure. While de-
gree centrality considers only one-step neighbors, closeness
centrality considers all nodes in the graph, and gives high
score to nodes which have short average distances to all the
other nodes. Closeness of a node is typically defined as
the inverse of the average over the shortest distances to all
other nodes; to simplify formulas we omit the inverse. Exact
computation requires an all-pairs shortest paths algorithm.
Unfortunately, this operation requires O(n3) time. For the
billion-scale graphs we consider in this work, computing
closeness centrality is prohibitively expensive. To address
this computational issue, we propose to use an accurate ap-
proximation instead of exact computation, leading to the fol-
lowing notion of centrality.

DEFINITION 1. (EFFECTIVE CLOSENESS) The effective
closeness centrality CECL(v) of a node v is defined as the
approximate average distance from v to all other nodes.

We will next define the notion of “approximate” more
precisely, by describing the approximation scheme we em-
ploy. Let N(r, v) be the number of neighbors of node v
within r steps, and Nv(r) be the number of nodes whose
shortest distances to v is r. Notice that Nv(r) = N(r, v) −
N(r − 1, v). Based on these quantities, standard closeness
can be defined by

(3.2)
closeness =

∑d
r=1 r·Nv(r)

n

=
∑d

r=1 r·(N(r,v)−N(r−1,v))
n

where d is the diameter of the graph and n is the
number of nodes. Let’s assume that we can easily get
N̂(r, v), an unbiased estimate of N(r, v). Define N̂v(r) to

be N̂(r, v) − N̂(r − 1, v). By the linearity of expectation,
N̂v(r) gives an unbiased estimate of Nv(r). Thus, by using
this approximation, we can define the effective closeness
CECL(v) by

(3.3)
CECL(v) =

∑d
r=1 r·N̂v(r)

n

=
∑d

r=1 r·(N̂(r,v)−N̂(r−1,v))
n

The remaining question is how to efficiently get an accu-
rate approximation N̂(r, v). For this purpose, we use the
Flajolet-Martin [11] algorithm for estimating the number of
unique items in a multiset. While many algorithms exist
for the estimation (e.g., [3, 8, 13]), we choose the Flajolet-
Martin algorithm because it gives an unbiased estimate, as
well as a tight O(log n) space bound [2]. The main result
of the Flajolet-Martin algorithm is that we can represent a
set with n unique nodes using a bitstring of size O(log n),
and the bitstring can be used to estimate the number n of
unique items in the set. From its construction, the bitstring
of the union of two sets can be obtained by bitwise-OR’ing
the bitstrings of these sets. In our case, each node starts with
a bitstring encoding a set containing only the node itself. At
every step, each node updates its bitstring by bitwise-OR’ing
with the bitstrings of its neighbors. This process continues
until the bitstrings for all nodes converge.

3.3 Flow-based Measures Betweenness centrality is the
most common and representative flow-based measure. In
general, the betweenness centrality of a node v is the num-
ber of times a walker visits node v, averaged over all possi-
ble starting and ending nodes. Different types of walks lead
to different definitions for betweenness centrality. In Free-
man betweenness [12], the walks always follow the shortest
path from starting to ending node. In Newman’s between-
ness [25], the walks are absorbing random walks. Both
of these popular definitions require prohibitively expensive
computations: the best algorithm for shortest-path between-
ness has O(n2 log n) complexity, while the best for New-
man’s betweenness has O(mn2) complexity.

Since existing measures do not scale well, we propose
a new flow-based measure, called LINERANK. The main
idea is to measure the importance of a node by aggregating
the importance score of its incident edges. This represents
the amount of information that flows to the node. Several
non-trivial questions need to be addressed for LINERANK to
be useful. First, how can we define the edge importance?
Second, how do we compute it efficiently?

For the first question, we define the edge importance
by the probability that a random walker, visiting edges via
nodes with random restarts, will stay at the edge. To define
this random walk precisely, we induce a new graph, called
directed line graph, from the original graph.

DEFINITION 2. (DIRECTED LINE GRAPH) Given a di-
rected graph G, its directed line graph L(G) is a graph such



that each node of L(G) represents an edge of G, and there is
an edge from a node e1 to e2 inL(G) if for the corresponding
edges (u1, v1) and (u2, v2) in G, v1 = u2.

For example, see a graph and its directed line graph in
Figure 1. There is an edge from the node (4, 1) to (1, 2) in
L(G) since the edge (4, 1) follows (1, 2) in G.

(a) Original graph G (b) Directed line graph L(G)

Figure 1: Original graph G and its corresponding directed
line graph L(G). The rectangular nodes in (b) correspond to
edges in (a). There is an edge from a node e1 to e2 in L(G)
if for the corresponding edges (u1, v1) and (u2, v2) in G,
v1 = u2, or the first edge follows the second. For example,
there is an edge from the node (4, 1) to (1, 2) in L(G) since
the edge (4, 1) follows (1, 2) in G.

Now think of a random walker visiting nodes on the
line graph. The walker staying at a node at the current step
will move to a neighboring node with high probability c, or
to a random node with low probability 1 − c, so that the
walk mixes well. We seek the stationary probability of this
random walk. Edges in the original graph are associated with
the stationary probabilities by which we define LINERANK
as follows.

DEFINITION 3. (LINERANK) Given a directed graph G,
the LINERANK score of a node v ∈ G is computed by
aggregating the stationary probabilities of its incident edges
on the line graph L(G).

Another important question is how to determine edge
weights in the line graph. The random walk in the line
graph is performed with transition probabilities proportional
to edge weights. For example, in Figure 2, the node e1 in
L(G), which corresponds to the edge (u1, v1) in G, transits
to either e2 = (v1, v2) or e3 = (v1, v3) with the probability
proportional to w2 and w3, respectively.

For an unweighted original graph, the line graph is also
unweighted. However, for a weighted original graph, the line
graph should have appropriate edge weights. We propose
to multiply the weights of the adjacent edges in the original
graph to compute the edge weights in the line graph. That is,
assume two adjacent edges e1 ≡ (u1, v1) and e2 ≡ (v1, v2)
in G have weights w1 and w2, respectively. Then the edge
(e1, e2) in L(G) have the weight w1w2 where e1 and e2 are
the corresponding nodes in L(G) to (u1, v1) and (v1, v2) in

(a) Original graph G (b) Directed line graph L(G)

Figure 2: Weights of the original graph G and the corre-
sponding directed line graph L(G). The rectangular nodes
in (b) correspond to edges in (a). If two consecutive edges
(u1, v1) and (v1, v2) in G have weights w1 and w2, respec-
tively, then the corresponding induced edge in L(G) have
the weight w1w2. For example, the edge (e1, e2) in L(G)
has the weight w1w2.

G, respectively. This weighting scheme enables a random
walker to transit in proportion to the original edge weights in
G, after normalization.

DEFINITION 4. (WEIGHTS IN DIRECTED LINE GRAPH)
If two consecutive edges (u1, v1) and (v1, v2) in G have
weights w1 and w2, respectively, then the corresponding
induced edge in L(G) have the weight w1w2.

The remaining challenge is to compute LINERANK on
the line graph. In the next section we show how to design
efficient algorithms for LINERANK, as well as effective
closeness, of billion-scale graphs using HADOOP [1], an
open-source MAPREDUCE framework.

4 Large-scale Centrality Algorithms
In this section, we describe HADOOP algorithms to compute
centralities for large-scale graphs. Specifically, we focus on
effective closeness and LINERANK, and propose efficient
algorithms.

4.1 Effective Closeness The effective closeness requires
N̂(r, v), an approximation of N(r, v) which is the number
of neighbors of node v within r steps. As described in Sec-
tion 3, we use Flajolet-Martin algorithm for the approxima-
tion. The HADOOP algorithm for the effective closeness iter-
atively updates the Flajolet-Martin (FM) bitstrings for every
node. The crucial observation is that the bitstrings update
operation can be represented in a form similar to matrix-
vector multiplication [18]. Specifically, let b(r − 1, v) be
node v’s bitstring encoding the set of nodes within distance
r − 1. Then the next-step bitstring b(r, v) is computed by
BITWISE-OR’ing the current bitstring b(r − 1, v) of v and
the current bitstrings of the neighbors of v.

(4.4)
b(r, v) = b(r−1, v) BITWISE-OR {b(r−1, u)|(v, u) ∈ E}

Since the above equation is a generalized form of
matrix-vector multiplication, a repeated matrix-vector mul-



tiplication with BITWISE-OR customization computes the
approximation N̂(r, v) and thus can compute the effective
closeness using Equation (3.3), as shown in Algorithm 1.
The InitialBitstring(line 2) and DecodeBitstring(line 11,13)
create and decode the FM bitstrings. The sumcur and
sumnext variables are used to check whether r reached the
maximum diameter of the graph, and to finish the computa-
tion early if possible.
Algorithm 1 Effective Closeness
Input: Edge E = {(i, j)} of a graph G with |V | = n
Output: Effective Closeness CECL = {(scorev)}

1: for v = 1 to n do
2: b(0, v)← InitialBitstring;
3: CECL(v) = 0;
4: end for
5: sumnext ← 0;
6: for r = 1 to MaxIter do
7: sumcur ← sumnext;
8: sumnext ← 0;
9: // Update effective closeness of nodes

10: for v = 1 to n do
11: N̂(r − 1, v)← DecodeBitstring(b(r − 1, v));
12: b(r, v) =

b(r−1, v) BITWISE-OR {b(r−1, u)|(v, u) ∈ E};
13: N̂(r, v)← DecodeBitstring(b(r, v));
14: CECL(v) =

CECL(v) + r × (N̂(r, v)− N̂(r − 1, v));
15: sumnext = sumnext + CECL(v);
16: end for
17: // Check whether the effective closeness converged
18: if sumnext = sumcur then
19: break for loop;
20: end if
21: end for
22: CECL(v) = CECL(v)/n;

The effective closeness algorithm is much efficient than
the standard closeness. The effective closeness requires
O(dm) time, where d is the diameter of the graph and m
is the number of edges, since it requires at most d matrix-
vector multiplications. In contrast, the standard closeness
requires O(n3) time, where n is the number of nodes, which
is much longer thanO(dm), given that real-world graphs are
sparse(m << n2) with very small diameter, a phenomena
known as “six degrees of separation”.

4.2 LINERANK How can we compute the LINERANK
efficiently? A naive algorithm would explicitly materialize
the line graph of the original graph. However, the line graph
can grow very large since a node v with in-degree α and out-
degree β in the original graph will generate αβ edges in the
line graph. Thus, the number |EL(G)| of edges in the line
graph is

(4.5) |EL(G)| =
n∑
v=1

indeg(v) · outdeg(v).

Real-world graphs have nodes with very large in and
out degrees, as the power-law degree distribution has long
tails. Thus, even though the original graph is sparse, the line
graph can be much denser than the original. For example, the
line graph of the YahooWeb graph in Table 2 has 251 billion
edges which is ∼ 250× more edges than the original graph.
Thus, explicit construction is not tractable for large graphs.

Our proposed main idea is to compute the LINERANK
without explicitly constructing the line graph. It turns
out that the weighted, directed line graph L(G), in our
Definition 4, has a decomposition into sparse matrices and
thus LINERANK can be computed efficiently on those sparse
matrices rather than on the dense matrix L(G).

To describe the decomposition, we need to define two
types of incidence matrices.

DEFINITION 5. (SOURCE INCIDENCE MATRIX) The
source incidence matrix S(G) of a graph G with n nodes
and m edges is an m×n matrix with entries S(G)ij = wi if
the ith edge with the weight wi in G has node j as its source,
and S(G)ij = 0 otherwise.

DEFINITION 6. (TARGET INCIDENCE MATRIX) The tar-
get incidence matrix T (G) of a graph G with n nodes and
m edges is an m× n matrix with entries T (G)ij = wi if the
ith edge with the weight wi in G has node j as its target, and
T (G)ij = 0 otherwise.

Note that if the original graph is sparse, both the inci-
dence matrices are sparse with exactly m non-zero elements
where each row contains only 1 non-zero element. Now we
introduce our proposed decomposition of the weighted, di-
rected line graph.

LEMMA 4.1. (LINE GRAPH DECOMPOSITION) Given a
directed, weighted graph G with n nodes and m edges, its
line graph L(G) has a decomposition with sparse matrices.

(4.6) L(G) = T (G)S(G)T

where T (G) and S(G) are the target and the source incident
matrices, respectively.

Proof. The (i, j)th element L(G)ij of L(G) is nonzero and
have the value wiwj if and only if there exists two consecu-
tive edges ei = (ui, vi), and ej = (vi, vj) in G with weights
wi and wj , respectively. On the right side of the equation,
(i, j)th element is computed by tTi sj where ti is the ith row
of T , and sj is the jth row of S. By the definition of the
incidence matrix, it follows that tTi sj = wiwj . �

The stationary probability of a random walk on the
line graph L(G) can be computed by the so called power



method, which repeatedly multiplies L(G) with a random
initial vector. Thanks to the decomposition (4.6), we can
multiply L(G) with a vector v by first multiplying S(G)T

with v, then multiplying T (G) with the previous result.
After computing the stationary probability of the random
walk on the line graph, we aggregate the edge scores for
each node. This can be done by right multiplying the edge
score by the overall incidence matrix B(G) of G, where
B(G) = S(G) + T (G). Algorithm 2 shows the complete
LINERANK algorithm.
Algorithm 2 LINERANK

Input: Edge E = {(i, j, weight)} with |E| = m,
Damping Factor c = 0.85

Output: LINERANK vector linerank
1: Build incidence matrices S(G) and T (G) from E
2: // Compute normalization factors
3: d1 ← S(G)T 1;
4: d2 ← T (G)d1;
5: d← 1./d2;
6: // Run iterative random walks on T (G)S(G)T

7: v← random initial vector of size m;
8: r← 1

m1; // restart prob.
9: while v does not converge do

10: v1 ← dv; // Hadamard product
11: v2 ← S(G)Tv1;
12: v3 ← T (G)v2;
13: v← cv3 +(1−c)r; // add with the restart probability
14: end while
15: linerank ← (S(G) + T (G))Tv;

Figure 3: Dependency of different MAPREDUCE jobs for
LINERANK computation. Each shaded box represents a
MAPREDUCE job. Notice that the most expensive operations
are matrix-vector multiplications which can be performed
efficiently since the sparse matrices S(G) and T (G) are
used instead of the dense L(G) thanks to the line graph
decomposition in Lemma 4.1.

We describe the above algorithm in detail and also
illustrate it through a flowchart on Figure 3.

Building Incidence Matrices. We first construct the inci-
dent matrices S(G) and T (G) from the sparse adjacency ma-
trix E. These matrices can be built in O(m) time by reading
edges and emitting the corresponding outputs.
Computing Normalization Factors. The ith element of the
diagonal matrix D contains the sum of ith column of L(G).
D is used to column-normalize L(G) so that the resulting
matrix can be used for the power iteration. The ’./’ in line 5
represents the element-wise inverse operation.
Random Walk on the Line Graph. From line 7 to 14, the
random walk on the decomposed line graph is performed.
Notice that all the operations are either matrix-vector multi-
plication, vector addition, or vector Hadamard products (line
10), all of which are not expensive. Also, notice that the
matrices S(G) and T (G) contain only m nonzero elements
for each, which is typically much smaller than the L(G) if
explicitly constructed.
Final LINERANK Score. The edge scores are summed up
in line 15 to get the final LINERANK score for each node.

Note the most expensive operation in Algorithm 2 is
matrix-vector multiplication which can be performed effi-
ciently in HADOOP [19].

4.3 Analysis We analyze the time and the space complex-
ity of LINERANK. The main result is that thanks to our
line graph decomposition(lemma (4.1)), LINERANK has the
same complexity as random walks on the original graph, al-
though the line graph is much bigger than the original graph.

LEMMA 4.2. (TIME COMPLEXITY OF LINERANK)
LINERANK takes O(km) time where k is the number of
iterations and m is the number of edges in the original
graph.

Proof. The time complexity is dominated by the while loop
from line 9 to 14. Inside the while loop, the most expensive
operations are the matrix-vector multiplications which take
O(m) time since the number of nonzero elements in S(G)
or T (G) is m. �

The number k of iterations depends on the ratio of the
absolute values of the top two largest eigenvalues of the line
graph. An advantage of LINERANK is that one can stop the
computation after a few iterations to get reasonable accuracy,
while the other betweenness centralities can not be stopped
in an any-time fashion. A similar results holds for space
complexity: LINERANK requires the same space as random
walks on the original graph.

LEMMA 4.3. (SPACE COMPLEXITY OF LINERANK)
LINERANK requires O(m) space.

Proof. The space complexity is dominated by the incidence
matrices S(G) and T (G) which have m elements each. �



5 Experiments
We present our experimental evaluation, which has a two-
fold goal. The first goal is to demonstrate the efficiency
and scalability of our proposed solutions, by focusing on the
following two questions:

Q1 How fast are our proposed large-scale centralities, com-
pared to the “standard” centralities?

Q2 How do our algorithms scale with the graph size, as well
as with the number of machines?

The second goal is to study the effectiveness of our approach
on real graphs. More specifically, we focus on the following
two questions:

Q3 How well does the effective closeness approximate
standard closeness?

Q4 What are the patterns of centralities in real networks?
Are there correlations between centralities? Are there
outliers?

After summarizing the datasets used in the experiments, the
rest of this section first addresses questions (Q1–2), and then
(Q3). (Q4) is answered in Section 6.

5.1 Datasets and setup The graphs used in our experi-
ments along with their main characteristics are summarized
in Table 2. 2 We use both real-world and synthetic datasets.

The YahooWeb graph contains the links between web
hosts. The weight of an edge is the number of web pages
between the hosts. The Enron data contain the email ex-
changes of Enron employees, where the weight is the num-
ber of emails between the two people. AS-Oregon contains
the router connection information. DBLP Authors contains
co-author relationships among prolific authors; according to
DBLP, authors are “prolific” if they have published at least
than 50 papers. The weight of an edge is the number of
papers co-authored by the incident authors. Note that the
degree does not necessarily correspond to the total number
of papers authored, since the dataset represents the induced
subgraph among prolific authors only. We chose this version
of the DBLP dataset to facilitate experiments and compar-
isons with “standard” measures of centrality.

Scalability experiments are performed on synthetic
datasets, since this allows flexibility in choosing graphs of
any size. We used a generator based on Kronecker multipli-
cation [24], which produces realistic graphs.

2YahooWeb: released under NDA.
Kronecker: http://www.cs.cmu.edu/∼ukang/dataset
Enron: http://www.cs.cmu.edu/∼enron
AS-Oregon: http://topology.eecs.umich.edu/data.html
DBLP: http://www.informatik.uni-trier.de/∼ley/db/indices/a-tree/prolific/
index.html, also in http://www.cs.cmu.edu/∼ukang/dataset

Name Nodes Edges Description
YahooWeb 24 M 1 B WWW links

between hosts
Kronecker 177 K 1,977 M synthetic

120 K 1,145 M
59 K 282 M
19 K 40 M

Enron 80 K 575 K Email
AS-Oregon 13 K 74 K Router

connections
DBLP 3 K 22 K DBLP prolific
Authors authors

Table 2: Summary of datasets and main characteristics.

We implemented our scalable algorithms in Java using
HADOOP version 0.20.1. Large-scale experiments were run
on the Yahoo! M45 cluster, using 10 to 70 machines. For
standard measures of centrality on small graphs, we used the
iGraph package for R on a single machine.

5.2 Scalability and efficiency Figure 4 shows the results
from experiments on efficiency and scalability.

Figures 4(a,d) show the running time for “standard” cen-
trality measures (closeness and shortest-path betweenness)
on a single machine. The running time clearly grows super-
linearly with respect to the number of edges.

Figures 4(b,c,e,f) show the running time of our dis-
tributed algorithms for our proposed centralities. For each
of the two centrality measures (effective closeness and LIN-
ERANK) we vary both the number of machines, as well as
the size of the graphs.

Both effective closeness and LINERANK show lin-
ear scale-up with respect to the number of edges, in fig-
ures 4(b,e). For this set of experiments, the number of ma-
chines was fixed at 50.

Scale-up is also near-linear with respect to the number
of machines. Figures 4(c,f) shows the scale-up 1/TM where
TM is the running time with M machines. The scale-up
score is normalized so that it is 1 when M=10. Both of the
algorithms scale near-linearly with respect to the number of
machines. For this set of experiments, the size of the graph
was fixed to 282M edges.

5.3 Effective Closeness Figure 5 shows the scatter plots
of standard closeness versus our proposed effective close-
ness, on relatively small graphs where it is feasible to com-
pute the former measure. Each point in the scatter plot corre-
sponds to a node in the graph. Across all datasets there exist
clear linear correlations between the two measures with cor-
relation coefficient at least 0.978. Therefore, effective close-
ness is a good substitute for standard closeness. More impor-
tantly, effective closeness can also be used in billion-scale
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graphs, while standard closeness is limited to small graphs.

6 Patterns of Centralities in Large Networks
In this section, we present patterns of centralities in real
world, large scale networks. Figure 6 shows the relationships
between degree (baseline measure) against effective close-
ness as well as LINERANK. Each point in the scatter plots
corresponds to a node in the graph. We have the following
observations for our proposed measures.

6.1 Effective Closeness and Degree In Figures 6 (a), (c),
and (e), we observe high degree nodes have high effective
closeness. This reflects that high degree nodes have higher
chances to reach all nodes within short number of steps, due
to its many connections.

OBSERVATION 1. (EFF. CLO. FOR HIGH DEGREE NODES)
High degree nodes have high effective closeness, reflecting
their higher chances to reach other nodes quickly.

In contrast to high degree nodes, low-degree nodes have
various effective closeness values. This implies that nodes
that are hard to be differentiated by degree measure now can
be easily separated by our effective closeness measure. The
reason is that, if a node v has an effective closeness f , then
a neighboring node of v will also have an effective close-
ness similar to f . Thus, two nodes with the same degree
can have different effective closeness based on which nodes
they connect to. For example, in the DBLP prolific authors
dataset, both Foto N. Afrati and Massimo Pocino have de-
gree 5 (the degree here is the number of prolific co-authors).
However, despite having the same degree, Foto N. Afrati has
1.6 times larger effective closeness than Massimo Pocino,
since she has co-authored a paper with Jeffrey D. Ullman
who has the highest effective closeness. Similarly, in the En-
ron dataset, Kenneth Lay, the CEO of Enron, has high effec-
tive closeness. fei.yan@enron.com has degree 1 but 1.81×
higher effective closeness than swann@enron.com with the
same degree, since fei.yan@enron.com has exchanged email
with the CEO. Finally, in the YahooWeb dataset, the site
www.robertsonbonded.com has degree 1 but has high ef-
fective closeness 4.4 × 10−8 which is more than 4 times
larger than the effective closeness of some pages with the
same degree. The reason is that www.robertsonbonded.com
is pointed by dmoz.org which has very high effective close-
ness. Thus, we conclude that the effective closeness gives
additional useful information not conveyed by the degree.

OBSERVATION 2. (EFF. CLO. FOR LOW DEGREE NODES)
Low degree nodes have varying effective closeness based on
the closeness of their neighbors. For this reason, effective
closeness can be used to distinguish low degree nodes.

6.2 LINERANK and Degree The effective closeness
gives another dimension of information which can be used

to differentiate nodes further than possible by degree alone.
However, nodes with high degree tend to have high effec-
tive closeness, and thus can not be distinguished by the ef-
fective closeness. LINERANK can be used to distinguish
high degree nodes. In contrast to the degree which con-
siders only one-step neighbors, LINERANK considers also
the quality of the connections of a node’s neighbors where
the quality is acquired by stationary probabilities in random
walks over the whole graph. Thus, some nodes have high de-
gree but have relatively low LINERANK due to the quality of
the edges. For example, Noga Alon has the highest degree,
which is the number of co-authors, in the DBLP prolific au-
thors dataset, but his LINERANK is smaller than Jeffrey D.
Ullman since Noga Alon co-authored 125 papers which is
smaller than 199 papers that Jeffrey D. Ullman co-authored
with other prolific authors. On the other hand, some authors
have high LINERANK compared to the degree. For example,
Philip S. Yu has 26 prolific co-authors but published 147 pa-
pers with them, thus has higher LINERANK than Kenneth
A. Ross who has 58 prolific co-authors but published 66
papers with them. The same applies to Micha Sharir who
has 34 prolific co-authors but 223 papers co-authored, and
thus has higher LINERANK. Similarly, in the Enron data,
the CEO Kenneth Lay has the highest degree, but his LIN-
ERANK is smaller than Jeff Dasovich, the governmental af-
fairs executive, since Jeff exchanged about 10× more email
than the CEO, probably due to his role. In the YahooWeb
data, the top 3 highest degree hosts(www7.calle.com,
dmoz.org, and www.dmoz.org), are different from the
top 3 highest LINERANK hosts(geocities.yahoohost.com,
www.angelfire.com, and members.aol.com). Again, the rea-
son for this difference is the strength of the connections: the
top 3 highest LINERANK hosts have more total neighboring
pages than the top 3 highest degree hosts. We conclude that
LINERANK gives yet additional useful information for dis-
tinguishing high degree nodes.

OBSERVATION 3. (LINERANK FOR HIGH DEGREE NODES)
High degree nodes have varying LINERANK based on the
strength of the incident edges. Thus, LINERANK can be
used to distinguish high degree nodes.

7 Conclusion
In this paper we address challenges in computing informative
measures of centrality on billion scale graphs. The main
contributions are the following:

1. Careful Design. We propose effective closeness, a
diameter-based centrality, and LINERANK, a flow-
based centrality, both of which are by design suitable
for large-scale, distributed processing platforms.

2. Algorithms. We develop the scalable and effective al-
gorithms for MAPREDUCE by using approximation and
efficient line graph decomposition. We perform experi-



(a) DBLP Authors: Effective Closeness vs. Degree (b) DBLP Authors: LINERANK vs. Degree

(c) Enron: Effective Closeness vs. Degree (d) Enron: LINERANK vs. Degree

(e) YahooWeb: Effective Closeness vs. Degree (f) YahooWeb: LINERANK vs. Degree
Figure 6: [Best Viewed In Color] The scatter plots from all pairs of large scale centrality measures. The effective closeness
and the degree centralities are normalized. Notice high degree nodes have high effective closeness since they can reach other
nodes within small number of steps due to many neighbors. However, low degree nodes have varying effective closeness.
Thus, effective closeness can be used to distinguish nodes with low degrees. High degree nodes can be distinguished by
LINERANK.



ments on large datasets with HADOOP, and demonstrate
the effectiveness as well as the scalability of our method
for billion-scale graphs.

3. Observations. We show how our proposed measures
can reveal interesting correlations and anomalies of
real-world graphs. We report that nodes with high
effective closeness have high degree. Furthermore, we
show that the effective closeness and LINERANK can
be used for discriminating low degree nodes and high
degree nodes, respectively.

Researches on social network analysis and computa-
tional social science [23] can benefit significantly from our
proposed large scale centralities and efficient algorithms. Fu-
ture research direction includes extending the current algo-
rithms to time-evolving networks.
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