
DisCo: Distributed Co-clustering with Map-Reduce
A Case Study Towards Petabyte-Scale End-to-End Mining

Spiros Papadimitriou Jimeng Sun

IBM T.J. Watson Research Center
Hawthorne, NY, USA

{spapadim,jimeng}@us.ibm.com

Abstract
Huge datasets are becoming prevalent; even as re-

searchers, we now routinely have to work with datasets that
are up to a few terabytes in size. Interesting real-world ap-
plications produce huge volumes of messy data. The mining
process involves several steps, starting from pre-processing
the raw data to estimating the final models.

As data become more abundant, scalable and easy-
to-use tools for distributed processing are also emerging.
Among those, Map-Reduce has been widely embraced by
both academia and industry. In database terms, Map-
Reduce is a simple yet powerful execution engine, which
can be complemented with other data storage and manage-
ment components, as necessary.

In this paper we describe our experiences and findings
in applying Map-Reduce, from raw data to final models,
on an important mining task. In particular, we focus on
co-clustering, which has been studied in many applications
such as text mining, collaborative filtering, bio-informatics,
graph mining. We propose the Distributed Co-clustering
(DisCo) framework, which introduces practical approaches
for distributed data pre-processing, and co-clustering. We
develop DisCo using Hadoop, an open source Map-Reduce
implementation. We show that DisCo can scale well and
efficiently process and analyze extremely large datasets (up
to several hundreds of gigabytes) on commodity hardware.

1 Introduction
It’s a cliché, but it’s true: huge volumes of data are col-

lected and need to be processed on a daily basis. For ex-
ample, Google now processes an estimated 20 petabytes of
data per day [13] and the Internet Archive1 is growing at
20 terabytes a month, having reached 2 petabytes sometime
in 2006. Retail giants such as Walmart and online shop-
ping stores such as Amazon and eBay all deal with with
petabytes of transactional data every day.

By definition, research on data mining focuses on scal-
able algorithms applicable to huge datasets. But let’s take
things from the beginning. Natural sources of data pro-

1http://www.archive.org/

vide them in vast quantities, but impure form. A repository
may consist of, e.g., a corpus of text documents, a large
web crawl, or system logs. Schemas do not arise sponta-
neously in nature. On the contrary, significant effort must
be invested to make the data fit a given schema. Most com-
monly, data are collected in a multitude of unstructured or
semi-structured formats. Aspects of the data that are rele-
vant to the task at hand need to be extracted and stored in an
appropriate representation. Most researchers start with the
assumption that the input is in the appropriate form. How-
ever, getting the data into the right form is not trivial (see
detailed discussion in Section 3).

Map-Reduce [12] is attracting a lot of attention, prov-
ing both a source for inspiration [30] as well as target of
polemic [14] by prominent researchers in databases. Re-
cently, some have questioned whether relational DBMSes
are appropriate for any and all data management tasks un-
der the sun [35, 34]. Moreover, [34] makes a strong case
that bundling data storage, indexing, query execution, trans-
action control, and logging components into a monolithic
system with a veneer of SQL is not always desirable. Start-
ing from this call for a component-based approach, Map-
Reduce is an execution engine, largely unconcerned about
data models and storage schemes. In the simplest case, data
reside on a distributed file system [19, 1, 26] but nothing
prevents pulling data from a large data store like BigTable
[7, 2, 38], or any other storage engine that (i) provides data
de-clustering and replication across many machines, and (ii)
allows computations to execute on local copies of the data.
Arguably, Map-Reduce is powerful both for the features it
provides, as well as for the features it omits, in order to pro-
vide a clean and simple programming abstraction.

Hadoop is an open source implementation of the core
components necessary for Map-Reduce. It focuses on pro-
viding the necessary minimum functionality, combining
simplicity of use with scalable performance2. However, if
additional functionality is needed by an application, other
open source components are available, which address e.g.,
key-based data access [2], or more complex job and data

2While this article was being written, Hadoop won the TeraSort bench-
mark in the general purpose category, completing the task in 209 seconds
using 900 eight-core nodes, beating the previous record of 297 seconds.

http://www.archive.org/

schema management [37, 3].
In the context we have so far described, this paper

describes our experiences and findings in applying the
above end-to-end philosophy and tools to a particular prob-
lem. More specifically, we focus on co-clustering or bi-
clustering [24, 8] of pairwise relationships extracted from
the raw data. The natural format for the relevant data fea-
tures, i.e., the graph of associations between different en-
tities, is a sparse adjacency matrix representation. Co-
clustering provides a general set of tools to simultaneously
cluster both rows and columns into groups, based on cer-
tain criteria. Unlike clustering which groups similar rows
or columns independently, co-clustering searches for sub-
matrices of rows and columns that are inter-related. Co-
clustering has been studied in many different applications
including text mining [15, 28], bioinformatics [24, 8], rec-
ommendation systems [18], and graph mining [6].

Powerful as it is, co-clustering is not practical to ap-
ply on large matrices (e.g., several millions of rows and
columns). This paper proposes a comprehensive Distributed
Co-clustering (DisCo) solution from the raw data to the
end clusters. In particular, we leverage the highly success-
ful Map-Reduce [13] both as a programming model and
as an implementation testbed. More specifically, we de-
velop DisCo using Hadoop [1], an open source package
which includes a freely available implementation of Map-
Reduce and has been widely embraced by both commercial
and academic worlds. DisCo is a scalable framework un-
der which various co-clustering algorithms can be imple-
mented. Since both data pre-processing (i.e., graph extrac-
tion) and co-clustering components need efficient sequen-
tial scans over the entire data set, we only need to use the
core Hadoop components.

The contributions of this paper are:
• We present a pragmatic data mining process that in-

volves data gathering, pre-processing, analysis, and
presentation.

• We design a complete distributed co-clustering solu-
tion using Hadoop.

• We demonstrate its scalability and power on mining
extremely large datasets.

As is often the case, none of the individual steps is surpris-
ing in and of itself. However, we believe that the entire
data mining process needs to be studied under the currently
available tools for large-scale data processing. This paper
illustrates our experiences, insights as well as common pat-
terns on using Map-Reduce (Hadoop) for data mining, from
the very beginning to the very end and aims to clarify some
common misconceptions.

The rest of the paper is organized as follows: Section 2
provides a very brief tutorial introduction of Map-Reduce,
as well as the key components it relies on. Section 3
presents a distributed data mining framework. Section 4

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

 113

 3766

 6844

nodes

A
gg

r.
 b

an
dw

id
th

 (
M

bp
s)

I/O Performance

Single drive

FibreChannel / GPFS
≈ 175 M

bps/d
isk

≈
50

0
M

bp
s/

di
sk

Measured
Fit
Theoretical

Figure 1. Scalability for data pre-processing:
processing a 350GB logfile takes about 7
minutes on 39 nodes.

presents our design for distributed co-clustering using Map-
Reduce and Section 5 evaluates its scalability and presents
results on real-world data sets. Section 6 briefly reviews re-
lated work, both in systems as well as data mining. Finally,
Section 7 concludes.

2 Background: Map-Reduce
Map-Reduce, originally described in [12], is a core com-

ponent in an emerging ecosystem of distributed, scalable,
fault-tolerant data storage, management, and processing
tools [19, 7, 2, 3, 37, 26, 38, 31]. Map-Reduce is essentially
a distributed grep-sort-aggregate or, in database terminol-
ogy, a distributed execution engine for select-project via se-
quential scan, followed by hash partitioning and sort-merge
group-by. It is ideally suited for data already stored on a
distributed file system which offers data replication as well
as the ability to execute computations locally on each data
node. There are two important aspects in Map-Reduce, the
programming model and the distributed execution frame-
work. We examine those next, after first introducing a sim-
ple example we shall use.

2.1 Example scenario
Assume that we have network router log data, consisting

of text lines such as
2008-02-25 13:55:07 SrcIP=129.34.20.19,DstIP=128.2.207.18,\

Proto=TCP,SrcPort=67537,DstPort=22,...
2008-02-25 13:56:08 SrcIP=129.34.20.23,DstIP=128.2.209.1,\

Proto=TCP,SrcPort=52391,DstPort=22,...
...

and we wish to extract an adjacency list of source-
destination IP pairs. We could achieve this with the fol-
lowing snippet in Python:

import re # Regular expression module
def ip_mapper (line):

srcip = re.search(’SrcIP=(.*?),’, line).group(1)
dstip = re.search(’DstIP=(.*?),’, line).group(1)
return (srcip, set(dstip))

def graph_reducer (graph, (srcip, dstlist)):
graph[srcip] = graph.get(srcip,set()).union(dstlist)

2

return graph

input = open(’router.log’, ’r’)
intermediate = map(ip_mapper, input)
graph = reduce(graph_reducer, intermediate, {})

We choose Python merely for illustration, to exemplify
the simplicity of the underling concepts. The Python state-
ments should easily map to similar constructs in other mod-
ern scripting languages, such as Perl and Ruby. Iterating
over a file object (input) will yield a sequence of lines.
The ip_mapper function will parse one line and return a
source-destination pair. The call to map takes as input a se-
quence of lines and produces another sequence, of IP pairs.
The second element is a set, for reasons that will become
clear shortly.

The reduce operation accumulates all elements of an
input sequence. Here, the accumulator is a dictionary
(graph) which stores a mapping between a source IP (key)
and set of destination IPs (value). The accumulation func-
tion is graph_reducer. Thus, the call to reduce above
takes as input the sequence of IP pairs produced by map
and outputs a dictionary of key-value pairs, where keys are
source IPs and values are lists of destination IPs.

Even though this program structure is relatively simple,
it is sufficiently general for many tasks [12, 10]. Map-
Reduce allows users to execute such computations on data
stored in a cluster with up to thousands of processors and
petabytes of storage, while requiring effort similar to that
of writing the above Python program.

2.2 Programming model and data flow
As it’s name suggests, Map-Reduce draws from a well-

established abstraction in functional programming. The
previous example illustrates most of the programming
model aspects. Formally, a computation is decomposed into
a map operation followed by a reduce operation. These are
specified by two functions,

MAPPER : 〈kin, vin〉 7→ 〈kint, vint〉
REDUCER : 〈kint, V ≡ {vint}〉 7→ 〈kout, vout〉

Both operate on key-value pairs, which we denote using an-
gle brackets 〈k, v〉. The key is used primarily in the reduc-
tion step, to determine which values are grouped together.
Values may carry arbitrary information.

2.3 Data flow
This abstract computation needs to be eventually exe-

cuted on a large cluster. In this section we focus on the
data flow model (see Figure 2a). The map input is be parti-
tioned into a number of input splits. Processing each split is
assigned to one map task. Subsequently, all map outputs are
partitioned among a number of reduce tasks, by hashing on
the intermediate key kint. Each reducer receives one part of

Split N−2

Split N−1

Split N

Mapper

Mapper

Mapper

Intermediate

Intermediate

Intermediate

Intermediate

Reducer

Reducer

Reducer Ouput 1

Ouput 2

Ouput 3

Mapper

Split 3

Split 2

Split 1

(a) Data flow

Split 1

Split N

Split 3

Split N

Split 3

Split 2

Split N−2

Split 2

Split N

Split N−1

Split 2

Split 3

Split 1

Split N

Host 0 Host 1 Host 2

Host M Host M−1

Output 1

Mapper

Mapper

Mapper

Reducer

Mapper

(b) Placement
Figure 2. Overview of the Map-Reduce execu-
tion framework [12].

the intermediate key space. Subsequently, it merges all in-
puts received from all mappers, sorts them based on kint to
group equal keys together, and applies the reducer function
to obtain the final results.

2.4 Distributed execution framework

One important feature is that the storage cluster may par-
tially or completely overlap with the compute cluster. This
is also true even when more sophisticated distributed data
stores [7] are used. Therefore, computation tasks can be ex-
ecuted on machines hosting local copies of the input data.
Map-Reduce is essentially a simple and clean framework
that allows a large class of computations to be transparently
executed in such a cluster architecture. Map-Reduce resem-
bles the concept of active disks [32], although the actual
design and implementations are very different.

Figure 2b illustrates one possible placement of the ele-
ments from Figure 2a (both data chunks, as well as com-
putation tasks) onto cluster machines. In this simple illus-
tration, it is possible to place all map tasks on machines
hosting a local copy of their input split. If this is not pos-
sible, then data will be transmitted over the network from a
remote storage node. In addition, an intermediate combiner
can be inserted between each mapper and the final reducer.
Its purpose is to combine all local map outputs (using either
the same or a separate reducer function) before they are sent
out to the reducers.

3

Distributed
File System
Distributed
File System

Gathering Pre-processing

Data access
API

Analysis

High-level API

Post-processing

BigTable
HBase

Sawzall
Pig
Dryad

GFS
HDFS
KFS

Map-Reduce
Framework

Mining process

Figure 3. Distributed mining process.
Finally, the distributed execution model also takes care

of load balancing and fault tolerance in a simple but effec-
tive way; see [12] for further information.

Scalability One of the main advantages of Map-Reduce
is that it can transparently use any number of machines. If
the volume of output data is much smaller than the volume
of input data, as is typically the case, then co-location of
tasks and data leads to performance improvement almost
proportional to the number of nodes (see, e.g., Figure 1).
We further discuss scalability in Section 5.

3 Distributed Mining Process
As shown in Figure 3, a distributed data mining process

involves several steps: data gathering, pre-processing, anal-
ysis and post-processing, many of which involve distributed
processing through either a data storage layer (such as GFS
[19], HDFS[1] or KFS[26]), or a higher-level data access
and job description language, such as Sawzall [31], Pig [3],
or Cascading [37].

Data gathering This step involves identifying the source
and obtaining the data. Some examples include (i) crawl-
ing millions of web pages, (ii) querying heterogeneous
databases, (iii) large-scale scientific simulation, or (iv) dis-
tributed system monitoring. Most are performed in a dis-
tributed manner, and can be expressed as Map-Reduce jobs.

Data pre-processing After obtaining the raw data, an im-
portant step is to transform it into the appropriate format
for data analysis. As a matter of fact, data cleaning often
consumes the majority of time for exploratory data min-
ing tasks. However, despite calls from several established
researchers [16, 22], it has been largely ignored in the re-
search literature. We can no longer afford to ignore this
step.

Increasingly, many researchers (ourselves included) now
find that they have to routinely deal with gigabytes or even
terabytes of data. For example just parsing 4.5 terabytes
of compressed text logs for 30 days worth of MSN in-
stant messaging data was reported to take a total of five
full days, on an eight processor machine with fast local

disks [27]. We recently had similar experiences processing
a 350 gigabyte raw network event log (similar to the exam-
ple in Section 2.1). We needed over five hours to extract
source/destination IP pairs, even though we were accessing
the data over a 2Gbps Fibre Channel link to a SAN (dot-
ted line in Figure 1). Similarly, the TREC data is 100GB
of text. Pre-processing that on a single powerful machine
(four cores and 32GB RAM) took several days. Compared
to these luxury settings, we are able to achieve much better
performance on a few commodity nodes running Hadoop.
More importantly, setting up Hadoop required minimal ef-
fort (about two to three hours for a moderately experienced
person).

Moreover, other members of our group took different ap-
proaches on the event log data. The first is the DPH (des-
perate Perl hacker) approach. The data were sorted and par-
titioned using a primary key consisting of a timestamp plus
a unique record identifier. Subsequently, extracting time-
dependent aggregates could be performed quickly. How-
ever, when we needed to extract a graph of IP-pairs, the
pre-processing was not helpful. Furthermore, the effort to
organize the data took approximately three days.

The second is the traditional database management sys-
tem approach. Since the each event record contains widely
different fields, depending on the event type, only the ten
or so common fields were extracted (dropping all remaining
possible fields, which number over one thousand but are not
always present). Furthermore, without spending too much
time to fine-tune MySQL’s storage engine parameters, no
more than a year worth of data (about a quarter of the total)
could be bulk loaded successfully. Pre-processing the data
into this common schema and building indices on all fields
gave good performance. However, the effort required about
two days and would be of no benefit if any of the dropped
fields needed to be analyzed.

We are not suggesting that the alternative approaches
were handled in the optimal way. However, in a relative
effort-to-benefit ratio, we believe that Hadoop wins.

Specifically for co-clustering, there are two main pre-
processing tasks:

• Building the graph from raw data.

• Pre-computing the transpose.

The first step primarily involves extracting the graph (e.g.,
source-destination or document-term pairs) and may also
involve other related tasks (such as stemming and stopword
removal). During co-clustering optimization, we need to it-
erate over both rows and columns. Therefore, we need to
pre-compute the adjacency lists for both the original graph
as well as its transpose. Transposition is very similar to
computing an inverted index, one of the applications Map-
Reduce was originally developed for [12]. This step typi-
cally took a few minutes. In Section 5, we describe actual
times on real-world data processing in detail.

4

Sym. Definition
A the m× n data matrix
m, n Number of rows and columns.
i, j Row/column indices, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
ai,j The (i, j) element of A.
G the k × l group matrix
k, l Numbers of row- and column- groups.
p, q Group indices, 1 ≤ p ≤ k, 1 ≤ q ≤ l.
gp,q The (p, q) element of G.
Ip Set of rows belonging to the p-th row group.
Jq Similar to Ip, but for columns
mp the size of p-th row group, mp ≡ |Ip|, 1 ≤ p ≤ k.
nq the size of q-th col. group, np ≡ |Jq|, 1 ≤ p ≤ k.
r Row group assignments.
c Column group assignments.
H(.) Shannon entropy function

Table 1. Definitions of symbols
Data analysis In practice, even after data pre-processing,
the data can still be too big to analyze in a centralized man-
ner. For example, the adjacency lists for TREC are about
4GB each. At a total of over 8GB for both the original ma-
trix and its transpose, few machines have enough memory
to even load the entire graph.

Because of the huge data, we see more and more data
analysis done in a distributed fashion. Without relying on
different infrastructure, many analyses can be done in the
same environment where data are gathered and processed,
using the same Map-Reduce programming model and ex-
ploit parallelism and fault-tolerance.

The next section presents the details of our Distributed
Co-clustering (DisCo) framework using Map-Reduce.

Post-processing The analysis results need to be visual-
ized, or sometimes turned into the input for other applica-
tions. They can also reside in the same environment.

4 Co-clustering Huge Datasets
In this section we present the main design for distributed

co-clustering using Map-Reduce. First, we give a very brief
overview of the necessary co-clustering definitions. Then
we explain how the necessary computations can be per-
formed as map and reduce operations. Finally, we conclude
with a brief description of certain important implementation
considerations.

4.1 Definitions and overview
Matrices are denoted by boldface capital letters, e.g., A

and vectors are denoted by boldface lowercase letters, e.g.,
a. The (i, j)-th element of matrix A is aij , the i-th row of
A is ai:, and the j-th column of A is a:j .

We focus on algorithms that employ a checkerboard de-
composition of the original adjacency matrix into a grid of

0 1 0 1 1
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1

A =
r = (2 1 2 1)T

c = (2 1 2 1 1)T

= B

Figure 4. A co-clustering example: Given A,
find group assignments r and c such that the
resulting sub-matrices in B are highly corre-
lated.

sub-matrices, also allowing row and column permutations).
Formally, given an m × n matrix, a co-clustering is a pair
of row and column labeling vectors

r ∈ {1, 2, . . . , k}m and c ∈ {1, 2, . . . , `}n,

so that each element of (r) is the group label r(i) for the
i-th row of the matrix, 1 ≤ i ≤ m and 1 ≤ r(i) ≤ k, and
similarly for the columns.

In addition to the label vectors, another key structure is
the k×` group matrix G. Different co-clustering algorithms
construct G in different ways, but the intuition is the same:
gpq gives the sufficient statistics for the (p, q) sub-matrix,
which corresponds to the intersection of p-th row group and
q-th column group.

The goal is to find good group assignment vectors such
that an error function is minimized. Various co-clustering
algorithms have adopted different error functions, such as
minimum mutual information [15], sum-squared distance
[9], and code length [6]. A general co-clustering framework
based on Bregman divergence [4] has been proposed, which
covers the entire exponential family.

For example, in Figure 4, given the 4 × 5 input matrix
A, the goal is to find r and c such that after permutation ac-
cording to r and c, the correlated sub-matrices are grouped
together. Searching for the optimal group assignment is NP-
hard [15]. Therefore, a common approach is to do local
search, alternating between row and column assignments,
while holding the other assignment fixed. The basic steps
are the following:
• Row iteration: Fixing the current column group as-

signment c, iterate over each row, assigning to the
“best” row group, finally obtaining (i) an updated r,
and (ii) an updated G.

• Global sync: Based on the new labels and group ma-
trix, the error function can be estimated to evaluate
whether an improvement was achieved or not.

• Column iteration and sync: Fix r and perform a sim-
ilar iteration over columns, to obtain updated c and G.

The high-level pseudo-code is listed in Procedure 1. This
large family of co-clustering algorithms, which includes all
those cited above, satisfies two key conditions:

1. The error function can be computed using r, c, and G,
without resorting to the raw data.

5

Procedure 1 CC (A, k, l)
1: Initialize r and c.
2: Compute the group statistics matrix G.
3: repeat
4: for each row i = 1..m do
5: for each row group label p = 1..k do
6: Assign r(i)← p if this minimizes error
7: Update G, r
8: Do the same for columns
9: until cost does not decrease

10: return r and c

2. The decision in line 5 of Algorithm 1 can be made
based on r, c and G from the previous assignments,
and on the values ai: of the i-th row, without resorting
to the values of other rows or columns.

These conditions are central, but also quite broad. The
first is essentially a statement about the sufficient statistics
(they can be computed as aggregates over each sub-matrix),
whereas the second is a statement about the optimization
strategy (local, greedy search).

4.2 Co-clustering with Map-Reduce
Next, we seek map and reduce functions to perform the

alternating updates using the Map-Reduce framework.
The idea is to initiate two Map-Reduce jobs for row and

column iterations, and a synchronization step in between to
update the global parameters G, r, and c.

The pseudo-code is the same as before except we need
two kind of Map-Reduce jobs: (i) initializing the group ma-
trix G and label vectors r and c, and (ii) performing row
or column iteration. We use random initialization, and a
simple Map-Reduce job can be formed (omitted for space).

Now we discuss how to formulate a Map-Reduce job for
row and column iteration. Figure 5 shows how we express
one iteration over rows as a Map-Reduce computation. The
iteration over columns operates on the adjacency list of the
transpose matrix in a similar way. This is the basic building
block, where most of the time is actually spent.

VAL1

2

3

m

75 13

191193

6 12

27 2

98

r(2)

Sequence file on HDFS

{ }MAP

Broadcast job parameters

c

G

KEY VAL

KEY VAL

Figure 5. One iteration over rows as a Map-
Reduce job.

0 1 0 1 1
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0

A =
4 4
2 0

G =

CCRowMapper(2, <1, 3>)
return < r(2) = 2, (g2 =(2, 0), {2}) >

CCRowReducer(2, <(2,0), {2}>)
g2 + = <2, 0>
I2 = I2 U {2}

c = (1 1 1 2 2)

Figure 6. Running map and reduce functions.

Map-function The adjacency list is stored on HDFS as a
sequence file of key-value pairs. The key is the row index i
and the value is the adjacency list, i.e., {j|1 ≤ j ≤ n, aij 6=
0}, along with the values aij . The group matrix G, as well
as the column labels c are globally broadcast to all mappers.
Given this information, the mapper can compute the locally
optimal row label r(i) for each row i, as well as the associ-
ated per-column statistics for that row. The labels r(i) are
the intermediate keys. The intermediate values comprise of
the row group statistics gi and the membership information
{i}. The pseudocode for CCROWMAPPER is shown in Pro-
cedure 2.

Procedure 2 CCROWMAPPER (k, v)
Globals: Cluster statistics G, labels c

Source node is i ≡ k
Adjacency list of i is ai: ≡ V
Compute row statistics gi := ROWSTATISTICS(ai:, c)
for each group label p = 1..k do

if assigning i to p would lower cost then
r(i)← p

emit 〈r(i), (gi, {i})〉

Note that updating the row group statistics gi ∈ R`

varies for different co-clustering algorithms. In the exper-
iments we rely on the cross-association cost function [6],
which uses the number of non-zero columns per column
group. Formally, gi(p) := #{j|aij 6= 0, c(j) = p}. For
example, in Figure 6, g2 = (2, 0) because the second row
has two non-zero columns in the first column group, and
none in the second column group.

Reduce function The reducer merges the row group
statistics and group members for each cluster label. For
example, in Figure 6, the intermediate key-values 2, <
(2, 0), 2 > are aggregated by vector addition over the 2nd
row in G, g2, and the set union of row 2 to I2. The pseu-
docode for CCROWREDUCER in more detail is as follows.

Global sync Finally, we need to collect the new results
for the G matrix and r row-label vector, as shown in COL-
LECTRESULTS.

Overall picture This building block is then used in the
alternating minimization to find a co-clustering for given k
and ` [6, 4], as well as to search for k and ` themselves [6].

6

Procedure 3 CCROWREDUCER (k, V)
Row group label is p ≡ k
Initialize gp ← 0, Ip ← ∅
for each map value (g, I) ∈ V do

gp ← COMBINESTATISTICS(gp,g)
Ip ← Ip ∪ I

emit 〈p, (gp, Ip)〉

Procedure 4 COLLECTRESULTS
Initialize G← 0, r← 0
for reduce output 〈p, (gp, Ip)〉 do

gp: ← gp

r(i)← p, for all i ∈ Ip

return G and r

For the latter, some additional modifications are necessary.
We can still decide which cluster to split in a way similar to
[6], but the computation to decide how to split it (i.e., which
row/column goes to the new group) is not parallelizable. We
found that using a 50-50 random split (so that half of the
rows/columns go into the new cluster and half remain in the
old cluster) is very effective and often yields better results
than the criterion of [6]; it always gives better results if we
exploit cluster resources by doing multiple random trials.

4.3 Implementation
Finally, we conclude with some brief remarks about im-

plementation considerations. Figure 7 shows the execution
timeline for a row iteration Map-Reduce job. In this case,
there is one reduce task at the top of the figure. All other
are map tasks, shown in green.

Performance tuning Even though Map-Reduce hides
most of the complexities of distributed execution, there are
still some parameters that need to be decided appropriately,
to improve performance. Setting them is relatively intuitive,
but does require some care. We quantify these in Section 5.
The first parameter has to do with thread pool sizes, which
needs to be configured for the cluster at hand. We found
that setting it to the number of cores per node plus 50% is
sufficient to achieve reasonably good node utilization. The
other important parameters are number of map tasks (which
can be implicitly determined by setting the minimum input
split size, as well as explicitly set), as well as the number of
reduce tasks. The input split size can be increased for large
input files, to avoid unnecessary task startup overheads. The
number of reducers should be set according to the size of
the intermediate key space, as well as the expected number
of intermediate pairs (after combination on each map task).
For co-clustering, the number of distinct intermediate keys
is equal to the number of clusters (k or `) and the number
of intermediate pairs is proportional to that. These are typ-

Figure 7. Execution timeline for a row itera-
tion map-reduce job.

ically small numbers, so it is best to use one reduce task.
However, for building the graph in the pre-processing step,
as well as for inverting the matrix, one reduce task becomes
a bottleneck, so it is best to increase this, up to the number
of machines available in the cluster.

Search randomization As described in Section 4.2, we
do random cluster splits. We can further exploit the avail-
ability of many machines to do multiple split trials and pick
the best. In this case, we can achieve up to 10% better fi-
nal cost objectives than [6]—in addition to the scalability
benefits that the Map-Reduce framework offers us.

5 Experiments
In this section we describe running time measurements

from our Hadoop deployment of DisCo. We focus on scal-
ability, as well as performance tuning. We should note that,
although we did consider alternative approaches (see dis-
cussion in Section 3), these proved impractical in the long
term.

5.1 Setup
We performed all experiments on 39 nodes in our clus-

ter. These were blade servers with two dual-core processors
(typically Intel Xeon 2.66GHz, with a few 3GHz machines),
all with 8GB RAM and all running Linux RHEL4.

The machines were located in four different blade-center
enclosures, three of which were in the same rack. All have
Gigabit ethernet connections. The switching fabric within
one blade-center enclosure has an aggregate bandwidth of
4Gbps. The same holds for the switches between blade
centers, only those links are shared with a larger number
of other nodes that may interfere with network traffic.

Each of the blades had a locally attached hard drive.
Blade servers typically have small and relatively slow
hard drives. The drives in these machines are SATA and
can achieve a sustained read performance (measured by
cat >/dev/null of a large file) of about 65MB/sec, or

7

0 5 10 15 20 25 30
4000

4500

5000

5500

6000

6500

7000

concurrent map tasks per node

A
gg

r.
 b

an
dw

id
th

 (
M

bp
s)

0 5 10 15 20 25 30 35 40
4000

4500

5000

5500

6000

6500

7000

reducers

A
gg

r.
 b

an
dw

id
th

 (
M

bp
s)

0 200 400 600 800 1000
4000

4500

5000

5500

6000

6500

7000

Input split size (MB)

A
gg

r.
 b

an
dw

id
th

 (
M

bp
s)

(a) no. of concurrent maps (b) no. of reduce tasks (c) input split size

Figure 8. Performance tuning using various parameters, for the pre-processing step.
roughly 500Mbps. The total capacity of our HDFS clus-
ter was just 2.4 terabytes. HDFS block size was set to
64MB (default value). For large files we used a replication
factor of 2, and for smaller files (less than a few hundred
megabytes) we used a replication factor between 8–12 (de-
pending on file size), so we can a larger number of mappers
(ideally all of them) that work on local replicas of the data.

The cluster is shared with other users. The namenodes as
well as the jobtracker were placed on two separate master
nodes, different from the set of 39 nodes used for storage
and computation. Under normal operation, we use a nice
level of five, but for timing experiments we raised it to zero
and repeated each measurement three times, taking an aver-
age. All code3 was implemented completely in Java (with
some parts using the GNU Trove collections for efficiency)
and we used Sun JDK version 1.6.0 03 for everything. We
used three real datasets, summarized in Table 2.

Dataset Raw Graph Size Non-zeros
ISS 350GB 170MB 2,483,513×1,283,449 9M
TREC 100GB 4.3GB 1,237,744×61,241 359M
Netflix — 1.1GB 480,189×17,770 100M

Table 2. Summary of datasets.

5.2 Scalability and performance
We report our experiences with respect to scalability and

performance tuning. In particular, we first study wall-clock
time versus number of nodes, to characterize scalability.
Next, we study performance tuning and the dependence
on the following parameters: (i) minimum input split size
(which equivalently determines the number of maps), (ii)
maximum number of concurrent map tasks per node, and
(iii) number of reducer tasks.

Figures 1 and 8 shows the results for the pre-processing
step on the ISS data. The default values are: 39 nodes,
6 concurrent maps per node, 5 reduce tasks, and 256MB
input split size. First, we observe that for this task, ag-
gregate throughput scales almost linearly with respect to
number of nodes (Figure 1). Next, we observe that as we
increase the number of concurrent map tasks, we achieve
better utilization of each node. The optimum is reached at

3See http://www.bitquill.net/trac/wiki/PCC/Start.

a number slightly larger than the number of cores on each
node. Increasing much beyond that starts causing unnec-
essary overheads (although we never reached the point of
thrashing). The number of reducers for this task that gives
peak throughput is about 5. One reducer becomes a bottle-
neck, whereas a larger number seems to create unnecessary
overheads. Finally, as we increase block size, we see that a
small size causes overheads since there is a large number of
map tasks, and therefore a larger number of HTTP request
to each reducer, to transfer intermediate results. However,
as we increase the split size to several multiples of HDFS
block size, it becomes much more difficult to place map
tasks on local copies of the data, so performance degrades
due to unnecessarily high network traffic.

Finally, Figure 9 shows aggregate throughput versus
number of nodes for one co-clustering iteration. Com-
pared to Figure 1, we see a scaleup at about the same
rate (135Mbps/node versus 175Mbps/node) up to about 10
nodes. Performance reaches a plateau after about 25 nodes,
corresponding to about 20± 2 seconds per iteration.

The bandwidth falls off because, as the job size de-
creases, framework overheads begin to dominate process-
ing time. Based on closer investigation, there are two over-
heads: (i) fundamental ones, related to transmitting task pa-
rameters, spawning the processes that will execute them,
storing results on HDFS, and so on; and (ii) some design
decisions that are specific to Hadoop, which uses busy loops
with a hardcoded sleep interval4.

Despite these partly “artificial” limitations5, there are
two important observations. First, compared to our previ-
ous main-memory implementation, where the performance-
critical inner loop is written in C (as a MEX module; the
rest of the code is in Matlab), 20 ± 2 seconds per iteration
is equal or better to what we can get on a machine with
48GB of RAM, due to thrashing. Second, as the dataset
sizes grow in future, our implementation will achieve lin-
ear scaleup. Thus, we achieve our goal of aiming towards
peta-scale mining.

4We decreased the largest ones, which were 5 seconds, to 0.5 seconds
for these experiments; still, the job client and job tracker spent a total of
about 1–3 seconds in sleep. We always report wall-clock times.

5In fairness, Hadoop is not primarily optimized for many short jobs.

8

http://www.bitquill.net/trac/wiki/PCC/Start

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000
Co−clustering iteration

Input split size (MB)

A
gg

r.
 b

an
dw

id
th

 (
M

bp
s)

Figure 9. Co-clustering iteration scalabil-
ity (TREC data, 4GB on HDFS after post-
processing): scales at the same rate as Fig-
ure 1 up to ten nodes, due to the relatively
small dataset size.
The general behavior of the co-clustering iterations with

respect to the other three parameters are almost identical
with those in Figure 8 (except that the absolute numbers
are smaller and in accordance to Figure 9), and omitted for
space. One difference (when running with a default of 17
nodes in the cluster) is that the peak in bandwidth versus
number of reducers occurs at one reducer, rather than five.
This is expected, since the size of intermediate results is
much smaller, as pointed out in Section 4.3.

Pre-processing Finally, we report the proportion of time
spent on pre-processing versus co-clustering. As discussed
before, pre-processing is often overlooked, even though it is
a pre-requisite for any mining task. Figure 10 describes our
experience and should be taken with a grain of salt. To have
some common ground for comparison, the time used for co-
clustering is that for 30 pairs of row and column iterations.
The actual number of iterations varies from one to over one
hundred, although the average we observed is around 100
iterations. We should also point out that pre-processing here
is performed with map-reduce – otherwise, pre-processing
itself takes up to days. Even one might argue that going
back to the original data is something that happens rarely,
we still wish to point out that (i) this may not always be the
case, and (ii) the effort required is still significant.

6 Related work
6.1 Map-Reduce framework

As a programming model, Map-Reduce adopts a ex-
tremely simple but powerful abstraction from functional
programming. Many data processing tasks can be easily
formulated as Map-Reduce jobs as shown in [13]. Inspired
by that, many higher-level programming abstractions have
been implemented for large-scale data processing, such as
Sawzall [31], Dryad [25] and DryadLINQ, PIG [3], SPADE
[17], FREERIDE-G [21], and Sector [23], among others.

0 0.2 0.4 0.6 0.8 1

TREC

ISS

Fraction of time

Pre−processing

Co−clustering

Figure 10. Fraction of time spent pre-
processing vs. co-clustering.

Much of the power of Map-Reduce derives from its use
of the Google File System (GFS) [19] (or similar file sys-
tems such as HDFS [1] and KFS [26]) as the underlying data
store. GFS is similar to other distributed file systems such as
[20, 33, 36, 5] in that it employs a distributed storage clus-
ter. However, they employ block-addressable storage and
a centralized metadata server (which essentially stores the
mapping between filenames and a list of blocks and their
locations in the storage cluster). Several higher-level data
storage abstractions provides a convenient data access and
storage API for Map-Reduce tasks, such as Bigtable [7],
HBase [1], and Hypertable [38].

As data grows, data mining and machine learning appli-
cations also start to embrace the Map-Reduce paradigm for
e.g., news personalization [11], or several machine learning
algorithms on multicore architectures [10]. Compared to
them, our focus is to illustrate a complete data mining pro-
cess involving multiple interconnected steps that all require
large-scale data processing.

6.2 Co-clustering

Co-clustering has been studied in many different applica-
tions including text mining [15, 28], genes and experimental
conditions in bioinformatics [24, 8], recommender systems
[18], and graph mining [6].

Many co-clustering algorithms have been proposed, de-
pending on the cluster shapes, the properties of input data,
and optimization objectives. Different cluster shapes in-
clude checkerboard partitions, single bicluster, exclusive
row and column partitions and overlapping partitions. For a
detailed discussion, see survey [29]. In this work, we focus
on checkerboard partitioning such as those in [4, 15, 6].

Various of optimization criteria have been proposed,
such as minimum mutual information [15], sum-squared
distance [9], and code length [6]. A general co-clustering
framework based on Bregman divergence [4] has been pro-
posed for covering the entire exponential family. In this
work, we utilize the code length objective, but the algorithm
can apply to the other cases with minor modifications.

7 Conclusions
In summary, this paper presents our findings and valu-

able lessons from designing a framework for a holistic ap-
proach to data mining, in the context of the co-clustering

9

task. Our experiences (Section 3) led us to consider a dis-
tributed infrastructure. Given the decreasing prices of mag-
netic storage and the ever increasing rate of data collection,
the necessity of data mining algorithms on distributed in-
frastructures is clear. In a growing open source ecosystem
of scalable, distributed data processing and management
components, Map-Reduce is emerging as the predominant
elementary abstraction for distributed execution of a large
class of data-intensive processing tasks.

Co-clustering has many important applications, includ-
ing text mining, graph mining and collaborative filter-
ing. This paper is a case study on a distributed co-
clustering framework, presenting our design and describing
the lessons we learned. We demonstrate that we can achieve
I/O rates that exceed those of high-performance storage sys-
tems (e.g., SAN over Fibre Channel running a high perfor-
mance file system such as GPFS), using relatively low-cost
components. More importantly, performance scales almost
linearly with the number of machines/disks. Finally, we
demonstrate results on large, real-world data sets.

8 References
[1] Hadoop. http://hadoop.apache.org/core/.
[2] HBase. http://hadoop.apache.org/hbase/.
[3] PIG. http://incubator.apache.org/pig/.
[4] A. Banerjee, I. Dhillon, J. Ghosh, S. Nerugu, and D. S.

Modha. A generalized maximum entropy approach to
Bregman co-clustering and matrix approximation. In
KDD, 2004.

[5] CFS. Lustre file system. http://www.lustre.org/.
[6] D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Falout-

sos. Fully automatic cross-associations. In KDD, 2004.
[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-

lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gru-
ber. Bigtable: A distributed storage system for struc-
tured data. In OSDI, 2006.

[8] Y. Cheng and G. M. Church. Biclustering of expression data.
In ISMB, 2000.

[9] H. Cho, I. Dhillon, Y. Guan, and S. Sra. Minimum sum-
squared residue co-clustering of gene expression data.
In SDM, 2004.

[10] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y.
Ng, and K. Olukotun. Map-Reduce for machine learn-
ing on multicore. In NIPS, 2006.

[11] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: Scalable online collaborative filtering.
In WWW, 2007.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. CACM, 51(1), 2008.

[14] D. J. DeWitt and M. Stonebraker. MapRe-
duce: A major step backwards.
http://www.databasecolumn.com/2008/01/
mapreduce-a-major-step-back.html.

[15] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-
theoretic co-clustering. In KDD, 2003.

[16] U. Fayyad. From mining the web to invent-
ing the new sciences underlying the inter-
net. http://www.sigkdd.org/kdd2007/
program.html#invited2, 2008.

[17] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
SPADE: The System S declarative stream processing
engine. In SIGMOD, 2008.

[18] T. George and S. Merugu. A scalable collaborative filtering
framework based on co-clustering. In ICDM, 2005.

[19] S. Ghemawat, H. Gobioff, , and S.-T. Leung. The Google
file system. In SOSP, 2003.

[20] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and
J. Zelenka. A cost-effective, high-bandwidth storage ar-
chitecture. In ASPLOS, 1998.

[21] L. Glimcher and G. Agrawal. FREERIDE-G: Enabling dis-
tributed processing of large datasets. In HPDC, 2008.

[22] R. Grossman. Data mining FAQ. http://www.
rgrossman.com/dm.htm.

[23] R. L. Grossman and Y. Gu. Data mining using high per-
formance clouds: Experimental studies using sector and
sphere. In KDD, 2008.

[24] J. A. Hartigan. Direct clustering of a data matrix. J. Am.
Stat. Assoc., 67(337), 1972.

[25] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequen-
tial building blocks. In EuroSys, 2007.

[26] Kosmix. Kosmos distributed file system (KFS). http:
//kosmosfs.sourceforge.net/.

[27] J. Leskovec and E. Horvitz. Planetary-scale views on an
instant-messaging network. In WWW, 2008.

[28] H. Li and N. Abe. Word clustering and disambiguation
based on co-occurence data. In COLING-ACL, 1998.

[29] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for
biological data analysis: A survey. IEEE/ACM TCBB,
1, 2004.

[30] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In SIGMOD, 2008.

[31] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. In-
terpreting the data: Parallel analysis with sawzall. Sci.
Prog. J., 13(4), 2005.

[32] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle. Active
disks for large-scale data processing. IEEE Computer,
2001.

[33] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In FAST, 2002.

[34] M. Seltzer. Beyond relational databases. CACM, 51(7),
2008.

[35] M. Stonebraker and U. Cetintemel. One size fits all: An idea
whose time has come and gone. In ICDE, 2005.

[36] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn. Ceph: A scalable, high-performance dis-
tributed file system. In OSDI, 2006.

[37] C. K. Wensel. Cascading. http://www.cascading.
org/.

[38] Zvents. Hypertable. http://hypertable.org/.

10

http://hadoop.apache.org/core/
http://hadoop.apache.org/hbase/
http://incubator.apache.org/pig/
http://www.lustre.org/
http://www.rgrossman.com/dm.htm
http://www.rgrossman.com/dm.htm
http://kosmosfs.sourceforge.net/
http://kosmosfs.sourceforge.net/
http://www.cascading.org/
http://www.cascading.org/
http://hypertable.org/

	Introduction
	Background: Map-Reduce
	Example scenario
	Programming model and data flow
	Data flow
	Distributed execution framework

	Distributed Mining Process
	Co-clustering Huge Datasets
	Definitions and overview
	Co-clustering with Map-Reduce
	Implementation

	Experiments
	Setup
	Scalability and performance

	Related work
	Map-Reduce framework
	Co-clustering

	Conclusions
	References

