Proximity Tracking on Time-Evolving Bipartite Graphs

Hanghang Tong Spiros Papadimitriou Philip S. YU Christos Faloutsds

Abstract

Given an author-conference network that evolves over tin
which are the conferences that a given author is most clos
related with, and how do these change over time? Lai
time-evolving bipartite graphs appear in many settingshst
as social networks, co-citations, market-basket analssid

—— 'Sejnowski_T'

collaborative filtering.

Our goal is to monitor (i) the centrality of an individ-
ual node (e.g.who are the most important auth@s and
(i) the proximity of two nodes or sets of nodes (exgho
are the most important authors with respect to a particul
conferenc®) Moreover, we want to do this efficiently anc
incrementally, and to provide “any-time” answers. We prt
posepTrack andcTrack, which are based on random wall
with restart, and use powerful matrix tools. Experiments

The Ranking of the Centrality

251

4
-
30

%+ 'Koch_C’

—&— 'Hinton_G’

= - - Jordan_m’

= i
990 1991

i i
1992 1993

i
1994

i
1995

i
1996

i i
1997 1998

1999

€) 'Il'he ranking of centralityfor some authors in NIPS.

real data show that our methods are effective and efficier ICDE ClKm KDD IcDM
. ICDCS ICDCS SIGMOD KDD

the mining results agree with intuition; and we achieve up t| gcveTrics ICDE ICDM ICDE
15~176 timesspeed-up, without any quality loss. PDIS SIGMETRICS CIKM SDM
) VLDB ICMCS ICDCS VLDB

1 Introduction 1992 1997 2002 2007

Measuring proximity (a.k.a relevance) between nodes Philio S. Yu's top 5 conferences at four fime steps. usin
bipartite graphs (see [18] for the formal definition of bijitar gb\avindO\?v oi‘5yearsp Ps, g

graph) is a very important aspect in graph mining and has _ o))
many real applications, such as ranking, spotting anomAfgureé 1: Scaling sophisticated trend analysis to time-
nodes, connection subgraphs, pattern matching and mgwlvmg graphs. See Section 6 for detailed description of
more (see Section 7 for a detailed review). results.

Despite their success, most existing methods are @@-author or a conference alone or, at best, a single, specific
signed for static graphs. In many real settings, the gragfighor-conference pair. Instead, we want to employ powerfu
are evolving and growing over time, e.g. new links arrive @halysis tools inspired by the well-established model of ra
link weights change. Consider an author-conference evaliém walk with restart to analyze the entire graph and provide
ing graph, which effectively contains information aboug thfurther insight, taking into account all author-confereirc:
number of papers (edge weights) published by each autfgtnation so far, i.e., including indirect relationshipaeng
(type 1 node) in each conference (type 2 node) for each ygam. However, if we need to essentially incorporate all
(timestamp). Trend analysis tools are becoming very pog&irwise relationships in the analysis, scalability qlyidie-
lar. For example, Google Trendprovides useful insights, comes a major issue. This is precisely the problem we ad-
despite the simplicity of its approach. For instance, in thess in this paper: how can we efficiently keep track of
setting of our example, a tool similar to Google Trends migptoximity and avoid global re-computation as new informa-
answer questions such addw does the number of papersion arrives. Fig. 1 shows examples of our approach.
published by an author vary over tinie@r “How does the In this paper, we address such challenges in multiple
number of papers published in a particular conference or reimensions. In particular, this paper addresses the faligw
search area (i.e., set of conferences) vary over timef?is questions:
kind of analysis takes into account paper counts for eith®f: How to define a good proximity score in a dynamic
setting?

How to incrementally track the proximity scores be-
tween nodes of interest, as edges are updated?
What data mining observations do our methods enable?

~ *Carnegie Mellon University
fIBM T.J. Watson Lab
fUniversity of lllinois at Chicago
thttp: //wwv. googl e. cont trends/

Q2:
Q3:

We begin in Section 2 with the problem definition and, Table 1: Symbol
in Section 3, we propose our proximity definition for dy- _ aple 1. ym QS
namic bipartite graphs. We carefully design our measuresyMPol | Definition and Description

ments to deal with (1) the links arriving at differenttimepss | M® n x | time-aggregate adjacency matrix at time
and (2) important properties, such as monotonicity. PrgxS(*) n x [slice matrix at time
imity will also serve as the basis of our centrality measuteAM®) | n x [difference matrix at time t
ment in the dynamic setting. Then, in Section 4, we studbgt) n x n out-degree matrix for type 1 object,
c_omputatl(_)nal issues thoroughly and_propose two fgst algo- ie. Dgt)(z', =" M®) (i,), and
rithms, which are the core of computing our dynamic proi- D(t)(' =0 7;)
imity and centrality measurements. The complete algosthm _ 1 \6J)=Re7Fd) _
to track proximity (Track-Proximity and centrality Track- | P2 I x I out-degree matrix for type 2 object,
Centrality) are presented in Section 5. In Section 6, we ver- i.e. DS (i) = >oi_ M®(j,4), and
ify th_e gﬁectiveness and efficiency of our proposed dynamic Dgt) (i,7) = 0 (i # §)
proximity on real datasets. 1 identity matrix
The major contributions of the paper can be summarizegd a matrix with all elements equal to 0
as follows: 1 a matrix with all elements equal to 1
1: Definitions of proximity and centrality for time-| n,! number of nodes for type 1 and type 2
evolving graphs. objects, respectivelyn(> 1)
2: Two fast update algorithmsF4st-Single-Updatand | ™ number of edges in the bipartite graph
Fast-Batch-Updatg without any quality loss. c fly-out probability for random walk with
3: Two algorithms to incrementally track centrality) restgrt _(set to be 0'9_5 in the pape_r)
(Track-Centrality and proximity (Track-Proximity in ["i.j proximity from node: to node; at timet
any-time fashion. only on the case of edge additions and weightincreases (e.g.

4: Extensive experimental case-studies on several rédihors always publish new papers, and users always rate
datasets, showing how different queries can be dRore movies). However, the ideas we develop can be easily
swered, achieving up tb5~176xspeed-up. generalized to handle other types of link updates, such as

o links deletions or edge weights decreases.

2 Problem Definitions Given the above notion, a dynamic, evolving graph
Table 2 lists the main symbols we use throughout the papmm be naturally defined as a sequence of observed new
Following standard notation, we use capital letters for medges and weights§("), 8 ... s® . However, the
tricesM, and arrows for vectors. We denote the transpaséormation for a single time slice may be too sparse for
with a prime (i.e.,M’ is the transpose d¥), and we use meaningful analysis, and/or users typically want to analyz
parenthesized superscripts to denote time (d&?) is the larger portions of the data to observe interesting pattanas
time-aggregate adjacency matrix at titje When we re- trends. Thus, from a sequence of slice matrices observed
fer to a static graph or, when time is clear from the contest far, SU) for 1 < j < t, we construct a bipartite
we omit the superscrigt). We use subscripts to denote thgraph by aggregating time slices. We propose three differen
size of matrices/vectors (e.d, x; means a matrix of sizeaggregation strategies, which place different emphasis on
n x [, whose elements are all zero). Also, we represent theges based on their age. In all cases, we use thetirmen
elements in a matrix using a convention similar to Matlabggregate adjacency matr{er adjacency matrix for short),
e.g.,M(i, j) is the element at th&" row and;j** column of denoted byM ("), for the adjacency matrix of the bipartite
the matrixM, andM(s, :) is thei*™® row of M, etc. With- graph at time steg. We will introduce the aggregation
out loss of generality, we assume that the numbers of typstfiategies in the next section).
and type 2 objects are fixed (i.e.,and! are constant for all Finally, to simplify the description of our algorithms,
time steps); if not, we can reserve rows/columns with zen@ introduce thedifference matrix AM®), which is the
elements as necessary. difference between two consecutive adjacency matriees, i.

At each time step, we observe a set of new edges or edgel¥) 2 M® — M(¢-1_ Note that, depending on the
weight updates. These represent the link information theggregation strategy, difference matrsM(Y) may or may
is available at the finest time granularity. We use tinge- not be equal to the slice matr(®).
slice matrix or slice matrix for brevity, S(Y) to denote the An important observation from many real applications
new edges and additional weights that appear at timetstejs that, despite the large size of the graphs involved (with
For example, given a set of authors and annual conferené¢esdreds of thousands or millions of nodes and edges), the
the number of papers that authquublishes in conference intrinsic dimension (or, effective rank) of their correse
during yeart is the entryS()(4, 7). In this paper, we focusing adjacency matrices is usually relatively small, priityar

because there are relatively fewer objects of one type.)~or&@ Dynamic Proximity and Centrality: Definitions

ample, on the author-conference graph fromAedataset |, this section, we introduce our proximity and centrality
(see Section 6), although we have more than 400,000 auth@snitions for dynamic bipartite graphs. We begin by re-
and about 2 million edges, with only 3500 conferences. yiewing random walk with restart, which is a good proximity
In the user-movie graph from thietFlix dataset, althoughmeasurement for static graphs. We then extend it to the dy-
we have about 2.7 million users vy|th more than 100 milligfymic setting by 1) using different ways to aggregate edges
edges, there are only 17,700 movies. We use theskewed fom different time steps, that is to place different emjidias
to refer to such bipartite graphs, i.e,,m > 1. on more recent links; and 2) usimpgree-preservatiorto

With the above notation, our problempTfack and achieve monotonicity for dynamic proximity.

cTrack) can be formally defined as follows: 3.1 Background: Static Setting

Among many others, one very successful method to mea-

sure proximity is random walk with restart (RWR), which

Given: (i) a large,skewed time-evolving bipartite graplas peen receiving increasing interest in recent years—see
{s®,t = 1,2,..}, and (ii) the query nodes of inter-section 7 for a detailed review.
est(,j,...) For a static bipartite graph, random walk with restart is

Track: (i) the top+ most related objects for each querylefined as follows: Consider a random particle that starts
node at each time step; and (ii) the proximity score (drom node:. The particle iteratively transits to its neigh-
the proximity rank) for any two query nodes at each tinters with probability proportional to the correspondinged
step. weights. Also at each step, the particle returns to rnodith

some restart probabilityl — ¢). The proximity score from

There are two different kinds of tracking tasks imodeito nodej is defined as the steady-state probabiljty

pTrack, both of which are related to proximity. For examthat the particle will be on nodg [24]. Intuitively, r; ; is

ple, in a time-evolving author-conference graph we carktrathe fraction of time that the particle starting from nadeill

“What are the major conferences for John Smith in the pagiend on each nodeof the graph, after an infinite number

5 years? which is an example of task (i); orffow much of steps.

credit (importance) has John Smith accumulated in the KDD If we represent the bipartite graph as a uni-partite graph

Conference so fatf?which is an example of task (ii). We with the following square adjacency mati% and degree

will propose an algorithmTrack-Proximity in Section 5 to matrixD:

PROBLEM 1. pTrack

: 0 M
deal withpTrack. = [nxn
P w (M’ lez)
PROBLEM 2. cTrack (3.1) D= (0D1 O]sz)
Given: (i) a large,skewed time-evolving bipartite graph Ixn 2

) ¢ — ii inter- _ :
{8t = 1,2,...}, and (ii) the query nodes of inter then, all the proximity scores ; between all possible node

est¢,j,) pairsi, j are determined by the matr®:
Track: (i) the top£ most central objects in the graph, for ri; = Q,5)

each query node and at each time step; and (ii) t ’ _' . P p—

centrality (or the rank of centrality), for each quer E'Z) Q (1= ¢) - Tnspyx(nn) = eD™W)

node at each time step. Based on the dynamic proximity as in equation 3.4, we

. . _ define the centrality for a given source nadas the average
In cTrack, there are also two different kinds of trackingy oximity score from all nodes in the graph (including

tasks, both of which are related to centrality. For examp itself) to s. For simplicity, we ignore the time step
in the same time-evolving author-conference graph, we @fberscript. That is,

track “How influential is author-A over the years¥vhich) A S

corresponds to task (i); oM/ho are the top-10 influential (3-3) centrality(s) = ;7“

authors over the year§? which corresponds to task (ii).3_2 Dynamic Proximity

Noctje that n tatSk\S\'/) ot:_;ll'rack, we do ?ﬁt neled tthﬁ? qukerysmce centrality is defined in terms of proximity, we will
nodes as inputs. We will propose another algoritfragk- henceforth focus only on the latter. In order to apply the

Centrality) in Section 5 to deal witkTrack. random walk with restart (see equation 3.2) to the dynamic

F(;)r all tht(_ase tasksp(l'rackT:;]\n(tj gTrack), Wet v;/ant tp I(Fetting, we need to address two subtle but important points.
provide any-lime answers. at1s, we want 1o quickly pg first is how to update the adjacency matik®),

maintain up-to-date answers as soon as we observe a Bewey o the observed slice mat%). As mentioned

i ix S i o .
slice matrix St Some_ representanve examples of Olﬂ)refore, usually it is not enough to consider only the current
methods are also shown in Fig. 1.

slice matrix S(¥). For example, examining publication8.2.2 Fixed degree matrix.

from conferences in a single year may lead to proximity a dynamic setting, if we apply the actual degree matrix
scores that vary widely and reflect more “transient” effecl(*) to equation (3.2) at time, the monotonicity property
(such as a bad year for an author), rather than “true” shiftdl not hold. To address this issue, we propose to use
in his affinity to research areas (for example, a shift degree-preservation [17, 31]. That is, we use the same
interest from databases to data mining, or a changedefyree matriD at all time steps.

institutions and collaborators). Similarly, examining vieo Thus, our proximityrf} from node: to nodej at time
ratings from a single day may not be sufficient to accurateljept is formally defined as in equation (3.4). The adjacency
capture the proximity of, say, two users in terms of theiatrix M(*) is computed by any update method in subsection
tastes. Thus, in subsection 3.2.1, we propose three differg.2 and the fixed degree matiX is set to be a constant)

strategies to aggregate slices into an adjacency msffiX times the degree matrix at the first time step—we always set
or, equivalently, to updat®(*). Note, however, that single-q — 1000 in this paper.

slice analysis can be viewed as a special case of the “sliding () @) (s =
window” a i ri; = QY(,7)
ggregation strategy. R
The second point is related to the “monotonicity” of Q") = (1 —¢)- Tpiiyx(niy — D TWH)~!
proximity versus time. In a dynamic setting with only link ® 0,., M®
additions and weight increases (i.&("(i,j) > 0, for WY = <M’(t) OM)

all time stepst and nodeg, j), in many applications it is .)
desirable that the proximity between any two nodes does) D = a-D

drop. For example, consider an author-conference bipar%e have the following lemma for our dynamic proximity
graph, where edge weights represent the number of pa

. . . &Guation (3.4)). By the lemma 3.1, if the actual degree
that an author has published in the corresponding confere ?z(i i) dc(Jes)r?ot ex{:eed the fixed degidéi, i) (conditiong

We would like a proximity measure that represents the toial then the proximity between anv two nodes will never dro
contribution/credit that an author has accumulated in ea P y y P

conference. Intuitively, this score should not decreass O\Zfolgrzgo?\sdmgnef)ge weights in adjacency mauit) do not
time. In subsection 3.2.2, we propadegree-preservatioto |

achieve this property. LEmMMA 3.1. Monotonicity Property of Dynamic Prox-
imity If (1) all elements in the difference matixM® are

3.2.1 Updating the adjacency matrix. o) (s s gt
As explained above, it is usually desirable to analyze muffon-negative; and (Zp (51_’1")) <D(i) (=12, (n+

ple slices together, placing different emphasis on linksekia !)); then we haVez(,} >r;; ~ forany two nodesi(;).

on their age. For completeness, we describe three possit§of: First of all, sinceD®(i,i) < D(i,i), we have
aggregation schemes. |cD'W® |k — 0 ask — oco. Therefore, we have

Global Aggregation. The first way to obtain the adja-Q(®) — (1 — () S5 o (cDT'W M)k On the other hand,
cency matrixM) is to simply add the new edges or edggince all elements in the difference mathM(®) are non-
weights inS) to the previous adjacency matiM ") as negative, we havaV (¥ (i, j) > W=D (i, j) for any two
follows: ¢ nodes(i, j). Therefore, we hav®® (i, j) > Q*=1(i, j)
M) =% "8l for any two nodesi, j), which completes the proof. [

j=1 Finally, we should point out that, D and the non-

,) negativity of M are relevant only if a monotonic score is
We call this schemeylobal aggregation It places equal jegired. Even without these assumptions, the correctness
emphasis on all edges from the beginning of time and, oRly efficiency of our proposed algorithms are not affected.

i i t) — g i . .
in this case AM™ = S'. Next, we define schemes thaj; ,on monotonic scores are permissible, none of these
place more emphasis on recent links. For both of the&%umptions are necessary

schemesAM®) £ S(*), 4D ic Proximity: C .
Sliding Window. In this case, we only consider the4 1 3énalrplq r(.)xu?nll?t))é Llonputgt|onsG h
edges and weights that arrive in the pést time steps, refiminaries. sb. on Static Graphs

: ‘1 : . In this section, we introduce our fast solutions to effidient
where the parametéen is the length of the sliding window: ;.o - dynamic proximity. We will start with BR.IN [32],

, ¢ _ a fast algorithm for static, skewed bipartite graphs. Wathe
M) = > sv) extend it to the dynamic setting.
j=max{1, t—len+1} One problem with random walk with restart is com-

putational efficiency, especially for large graphs. Aceord
ing to the definition (equation (3.4)), we need to invert an
(n + 1) x (n + 1) matrix. This operation is prohibitively

Exponential Weighting. In this case, we “amplify” the
new edges and weights at timeby an exponential factor

BB >1): MO =3 pISU),

Algorithm 1 BB_LIN score between one type-1 object and one type-2 object, only
Input: The adjacency matrix at timg as in equation (3.1); one sparse vector-vector multiplication (step 4 and stép 6)

and the query nodesandj. necessary. Finally, for a proximity score between two tgpe-

Output: The proximityr; ; from nodei to node;. objects (step 8), only retrieving one element in the makrix

1: Pre-Computation Stage(Off-Line): is needed. As an example, on tNetFlix dataset, it takes

2: normalize for type 1 objectdr = D' - M less than 1 second to get one proximity score. Note that all

3: normalize for type 2 objectdvic = D, ' - M’ possible proximity scores are determined by the mafix

4: compute the core matrixA = (I — ¢?Mc - Mr)~! (together with the normalized adjacency matridds and

5. store the matriceMr, Mc, andA. Mc). We thus refer to the matriA as the theore matrix

6: Query Stage (On-Line): 4.2 Challenges for Dynamic Setting

7. Return: r; ; = GetQij (A, Mr, Mc, 1, j, c) In a dynamic setting, since the adjacency matrix changes

over time, the core matriA(*) is no longer constant. In
other words, the steps 1-4 in Alg. 1 themselves become
slow for large graphs. In [32], the authors show that fer part of the on-line stage since we need to update the
skewed, static bipartite graphs, we only need to pre-coepugbre matrixA () at each time step. If we still rely on the
and store a matrix inversion of size< [to get all possible straightforward strategy (i.e., the steps 1-4 in Alg. 1) to
proximity scores. BELIN, which is the starting point for update the core matrix (referred to as “Straight-Update”),

our fast algorithms, is summarized in Alg. 1. the total computational complexity for each time step is
O(I? + m - 1). Such complexity is undesirable for the online
Algorithm 2 GetQijj stage. For example, 1.5 hours to recompute the core matrix
Input: The core matrixA, the normalized adjacency matrifor the NetFlix dataset is unacceptably long.
cesMr (for type 1 objects), andc (for type 2), and Thus, our goal is to efficiently update the core matrix
the query nodesandj (1 <i,j < (n +1)). AW attime steg, based on the previous core matAxt—1)
Output: The proximityr; ; from nodei to nodej and the difference matridAM (). For simplicity, we shall
1: if i <mandj < nthen henceforth assume the use of the global aggregation scheme
2 q(i,j) = 1(i = j) + *Mr(i,:) - A - Mc(:, §) to update the adjacency matrix. However, the ideas can
3: elseifi <nandj > nthen be easily applied to the other schemes, sliding window and
4 q(i,j) = Mr(i,:) - A(:,j —n) exponential weighting.
5. elseifi >nandj <nthen 4.3 Our Solution 1: Single Update
6 q(i,j) = cA(i —n,:) - Mc(:, j) Next, we describe a fast algorithnFgst-Single-Updaie
7: else to update the core matriA® at time stept, if only one
8 q(i,j)=A(i—n,j—n) edge (io, jo) changes at time. In other words, there is
9: end if only one non-zero element AM®: AM® (i, jo) = wp.
10: Return: r; ; = (1 —¢)q(i, j) To simplify the description of our algorithm, we present the

difference matrixAM (") as a from-to listio, jo, wo).

Based on Alg. 1, we only need to pre-compute and stare__ _
a matrix inversionA of sizel x I. For skewed bipartite Algorithm 3 Fast-Single-Update
graphs [< m,n), A is much cheaper to pre-computénput: The core matrixA(*~1), the normalized adjacency
and store. For example, on the entiletFlix user-movie matricesMr) (for type 1 objects) andic*~ Y (for
bipartite graph, which contains abot7M users, about type 2 objects) at time step- 1, and the difference list
18K movies and more thatD0M edges (see Section 6 for [ig, jo, wo| at the time step.
the detailed description of the dataset), it takes 1.5 htmurOutput: The core matrixA*), the normalized adjacency
pre-compute tha8K x 18K matrix inversionA. For pre- matricesMr® andMc'") at time step.
computation stage, this is quite acceptable. 1 Mr® = Mr® Y andMc® = Mc!*~ 1),
On the other hand, in the on-line query stage, we cae Mr® (io, jo) = Mr® (io, jo) + B
get any proximity scores using the funct@etQu2 . This : Mc(t)(jo, io) = MC(t)(jo,io) L wo
stage is also cheap in terms of computation. For example, to D(jo+n,jo+n)
output a proximity score between two type-1 objects (step 4 X =0pmx2, arggY = 025m) w
in GetQij) , only one sparse vector-matrix multiplication and® X(:,1) = Me™(:, io), andX (jo, 2) = 557050y
one vector-vector multiplication are needed. For a proimi 6: Y (1, jo) = DCZ'Uw;O), andY(2,:) = ¢2- Mr* V(i)
L= R VNG
__ZW? that in step 2 oBetQij, 1(.) is the indicator function, i.e. itis 1 ; i(t_) (:IQX%t_l)X[_i_ 2(,5_1)) §) L.Y.AGD
if the condition in(.) is true and 0 otherwise.

The correctness d¢fast-Single-Updatés guaranteed by step. In most cases, these new records only involve a small
the following theorem: number of authors and/or conferences—see Section 6 for the

THEOREM4.1. Correctness of Fast-Single-Update. The details. In this section, we show that we can do a single
matrix A® maintained byFast-Single-Updatés exactly batch updateRast-Batch-Updateon the core matrix. This
the core matrix at time steg, ie., A® = (I — is much more efficient than either doingy single updates

CQMC(t)Mr(t))71. repeate_dly, or recomputing the core _matrix from scratc_h.
_)) The main advantage of our approach lies on the observation
Proof: first of all, since only one edggi, jo) is updated hat the difference matrix has low rank, and our upcoming
at timet, only theif" row of the matrixMr'") and theif algorithm needs time proportional to ttenk, as opposed to
column of the matri®c) change at time the number of changed edgés This holds in real settings,
LetV® = 2Mc-Mr®), andv (¢~ = 2Mc!""V. pecause when a node is modified, several of its edges are
Mr(‘~Y. By the spectral representationdf”) andV(*~1), changed (e.g., an author publishes several papers in a given

we have the following equation: conferences each year).
n LetZ = {iy,...,i5} be the indices of the involved type
t a2 (®) . . ®) (1. .) Loda oo .
V= ZMC (k) - MrP(k,) 1 objects. Similarly, let7 = {j1, ..., j;} be the indices of
k=1

i the involved type 2 objects. We can represent the difference
(4.5) = V7494 matrix AM® as ann x [matrix. In order to simplify the
description of the algorithm, we define two matrickd1r

whered indicates the difference betwedA*) and V(-1 _
andAMc as follows:

This gives us:
1

6= (1) - CQMC(t)(Z, io) M9 (ig,:) =X-Y AMr(k,s) = M

=0 D (i, ir)

0.

where the matriceX andY are defined in steps 4-6 of AMc(s, k) = ~AM() (Js, ik)
Alg. 3. Putting all the above together, we have D(js +n,js +n)
@A =(I-V) ' =1-V"'-X.Y)"! @7 (k=1,..ns = 1,..10)

Applying the Sherman-Morrison Lemma [25] to equa-
tion (4.6), we have The correctness dfast-Batch-Updatés guaranteed by

A® = AED L ACG-D .1,y . AED the following theorem:

where the2 x 2 matrix L is defined in step 7 of Alg. 3. ThisTHEOREM4.2. Delta Matrix Inversion Theorem. The
completes the proof. O matrix A®) maintained byFast-Batch-Updatés exactly

Fast-Single-Updatés significantly more computation-the core matrix at time steg, ie., A® = (I —

ally efficient, as shown by the next lemma. In particular, tQ@MC(t)Mr(t))—l_
complexity ofFast-Single-Updates only O(i?), as opposed
to O(I® + ml) for the straightforward method. Proof: Similar toFast-Single-UpdateOmitted for space.]

The efficiency ofFast-Single-Updatés given by the
following lemma. Note that the linear ter@(/) comes
from equation (4.7), since we need to scan the non-zero
Proof: Omitted for space. 0 elements of the difference matrixM ("), Compared to the
4.4 Our Solutions 2: Batch Update straightforward recomputation which @&(I® + ml), Fast-

In many real applications, more than one edges typicaﬁf‘tCh'Updates O(min(l,) - 1* +). Sincemin(l, &) <1
change at each time step. In other words, there are muIti%\éfays holds, as long as we hae < m, Fast-Single-
non-zero elements in the difference mathi®dI(*). Suppose P‘{ate's always_ more efficient. _On the_ other hand, if we
we have a total ofi, edge changes at time stepAn obvious don repe_ated single updqtesAus;F@st-Slngl_e-Updat_ethe
choice is to repeatedly cdiast-Single-Update: times. computatlonal complexity i©)(rfl)_' Thus, since typ_|c_ally

An important observation from many real applicatiof&in(l, 1) <, Fast-Batch-Updatés much more efficient
is that it is unlikely thesen edges are randomly distributedin this case.

Instead, they typically form a low-rank structure. That .
is, if thesern edges involven type 1 objects and type LEMMA 4.2. Efficiency of Fast-Batch-Update. The com-

2 objects, we havéi < 7 or | < . For example, p2utational complexity of Fast-Batch-Updatedgmin (1, ii) -
in an author-conference bipartite graph, we will often add™ m).

a group ofri new records into the database at one tm}?roof' Omitted for space 0

LEMMA 4.1. Efficiency of Fast-Single-Update. The com-
putational complexity of Fast-Single-Updated$i?).

Algorithm 4 Fast-Batch-Update

Algorithm 5 Initialization

Input: The core matrixA*~1), the normalized adjacencyinput: The adjacency matrix at time stepM(!), and the

Output: The core matrixA®, the normalized adjacency

matricesMr* Y (for type 1 objects) andic'' V) (for i
1, and the difference Output: The fixed degree matril, the normalized matri-

type 2 objects) at time step—
matrix AM® at the time step

parametec.

ces at time step Mr(" andMc", and the initial core
matrix A1),

matricesMr® andMc® at time step. 1: get the fixed degree matrl? as equation (3.4)

1 Mr® = Mr® Y andMc® = Mc*~ V. 2: normalize for type 1 objectdir) = DT!- MM
2. defineAMr andAMc as in equation (4.7) 3: normalize for type 2 objectdvic’) = Dy - M/()
3 Mr(Z,7) = Mr"(Z, J) + AMr 4: get the core matrixA®) = (I — 2Mc™V) - Mr(V)~1
4 Mc'(7,7) = Mc"(7,7) + AMe 5: store the matriceMr™™, Mc™™), andA ™.
5: letk = min(l,n). letX =0, ,;,andY =0,
6: if [< i then
7 X(,1:0) =Mc* V() AMr 5.1 Track-Centrality
8: (1 +1:2,) = AMc-Mr(tfl)(I,) Here, we want to track the top-most important type 1
9 X(J,1:1)=X(J,1:1)+ AMc- AMr (and/or type 2_) no<_jes over time. For example, on an author-
100 X(J,1: [) = X(J,1: [) +Y(i+ 1:9i,) confe_rence l:_)lpartlte graph, we want to track the_ top-10
1 Y(i+ 1:9] J) =0 mos_t influential authors (and/or conferences) over time. I_:o
1> fork—1: l%’do a given query node, we also vyant to track its centrality
13: setY(k. in) = 1, andX (ji, k +]%) _ (or the rank of centrahty) over time. For example, on an
14: end for ’ ' ’ guthor-conference b|par'F|te graph_, we can trapk the velati
15: etX — . X. andY — 2. Y importance of an authpr in the entire community.
16: else ' Based on the de_f|n|t|on of centrality (equatl_on 3.3) and
17: X(:1:) = Mc(t)(1) the fast upda’Fe algorlt_hms we developed in Section 4,_We can
18: X(;’7 At 1:20) = AMe get thgfollowmg algolrlthm (Alg. 6) .to trackthgtdpquengs
19: Y(1 ’ﬁ J) = ¢ - AMy over time. The algorithm for tracking centrality for a siagl

' e _ query node is quite similar to Alg. 6. We omit the details for
20 Y(A+41:2n,:)=c M (T,)) space
21: end if '
22: L = (Lj,ipp — Y - AUTD - X) Algorithm 6 Track-Centrality(Topk Queries)
23 A® = AG-D L AC-D X . L. Y. Al-D

Input: The time-evolving bipartite
(MDD, AM® (¢t > 2)}, the parametersandk
Output: The topk most central type 1 (and type 2) objects
5 Dynamic Proximity: Applications 1 :ﬁiEZI(i:zhattlirgr? step
In this section, we give the complete algorithms for the two,. for each time step(t > 1) do
applications we posed in Section 2, thatTigack-Centrality 5. . _ 1in - M) . A®); andy = 1y, - A®
and Track-Proximity For each case, we can track top- , 7’2 =cozty
queries over time. Fofrack-Centrality we can also track 7 = rd - Mc®
- 2

che _(Fentlr(allg)ty (pr _the centralltly rank) lioLan mdw@ualdmh output the tofk type 1 objects according i@’ (larger
or Track-Proximity we can also track the proximity (or the value means more central)

proximity rankj for a given pair of nodes. . 70 outputthe tofk type 2 objects according 16’ (larger
In all the cases, we first need the following function value means more central)

(i.e., Alg. 5) to do initialization. Then, at each tlme step,g. UpdateMr®), Mc®, andA® for ¢ > 2.

we update (i) the normalized adjacency matridds; ") and o end for

Mr®, as well as the core matrixA®; and we perform

(i) one or two sparse matrix-vector multiplications to get Instep 8 of Alg. 6, we can either usast-Single-Update

the proper answers. Compared to the update time (pzxrtFast Batch- Updateto update the normalized matrices

(1)), the running time for part (ii) is always much less. sdar® andMc”, and the core matriA(®). The running

our algorithms can quickly give the proper answers at edihe for steps 3—8 is much less than the update time (step 8).

time step. On the other hand, we can easily verify that olinus, Track-Centralitycan give the ranking results quickly

algorithms give the exact answers, without any quality logs each time step. On the other hand, using elementary

or approximation. linear algebra, we can easily prove the correctneSsadk-

graphs

Centrality. Algorithm 7 Track-Proximity(Top-k Queries)

LEMMA 5.1. Correctness ofTrack-Centrality. The vectors Input: The time-evolving bipartite graphs
7+’ andr3’ in Alg. 6 provide a correct ranking of type 1and ~ {M™",AM® (¢ > 2)}, the parameters: and k,
type 2 objects at each time step That is, the ranking is ~ and the source node

exactly according to the centrality defined in equat{@r8). Output: The top# most related type 1 (and type 2) objects
for s at each time step

5.2 Track-Proximity

1: Initialization

Here, we want to track the top-most related/relevant type 2: for each time step(¢t > 1) do

1 (and/or type 2) objects for object A at each time step. Foe:
example, on an author-conference bipartite graph evolving
over time, we want trackWhich are the major conferences s:
for John Smith in the past 5 yedrdr “Who are most the e:
related authors for John Smith so fadrFor a given pair of 7
nodes, we also want to track their pairwise relationship oves:
time. For example, in an author-conference bipartite graph

evolving over time, we can trackHow much credit (a.k.a 1o0:
proximity) John Smith has accumulated in KDD? 11

The algorithm for topk queries is summarized in Alg. 7.

The algorithm for tracking the proximity for a given pair of12:

nodes is quite similar to Alg. 7. We omit its details for space

In Alg. 7, again, at each time step, the update time wilk:

fori=1:ndo
re; = GetQij (AM, Mr® Mc®, s, i, c))
end for
letri = [rs](i=1,...n)
forj=1:1do
re; = GetQij (A®, Mr® Mc®, s, j + n,c))
end for
letrs = [rs;]1(j =1,...0)
output the togk type 1 objects according tg’ (larger
value means more relevant)
output the togk type 2 objects according t8’ (larger
value means more relevant)
updateMr®, Mc®, andA® for ¢ > 2.

dominate the total computational time. Thus by using eithes: end for
Fast-Single-Updat®r Fast-Batch-Updatewe can quickly
give the ranking results at each time step. Similafrack-
Proximity, we have the following lemma for the correctnesmrresponds to one year, from 1987 to 1999. For each year,
of Track-Proximity we have an author-paper bipartite graph. Rows represent
authors and columns represent papers. Unweighted edges
etween authors and papers represent authorship. There are
,037 authors, 1,740 papers, and 13 time steps (yearsain tot
with an average of 308 new edges per year.
The DM, AC, and ACPost datasets are from DBLP
6 Experimental Results For the first two, we use paper publication years as times-

In this section we present experimental results, after W&NPS, similar tNIPS. Thus each graph slicgcorresponds

introduce the datasets in subsection 6.1. All the experignel® ON€ year. _ _
are designed to answer the following questions: DM uses author-paper information for each year be-
tween 1995-2007, from a restricted set of conferences,

e Effectiveness:What is the quality of the applicationqm,immy the five major data mining conferences (‘KDD',
(Track-Centralityand Track-Proximity we proposed in cpwz. ‘SDM’. ‘PKDD’ and ‘PAKDD’). Similarto NIPS

i 2
this paper~ rows represent authors, columns represent papers and un-

« Efficiency:How fast are the proposed algorithniragt- Weighted edges between them represent authorship. There
Single-Update and Fast-Batch-Updatier the update are 5,095 authors, 3,548 papers, and 13 time steps (years) in

time, Track-Centrality and Track-Proximity for the total, with an average of 765 new edges per time step.
overall running time)? AC uses author-conference information from the entire

6.1 Datasets. DBLP collection, between years 1959-2007. In contrast

We use five different datasets in our experiments, sumrﬁ%—DM' columns represent conferences and edges connect

rized in Table 6.1. We verify the effectiveness of our préa_uthors to conferences they have published in. Each edge

posed dynamic centrality measureshiPS, DM, andAC, in S is weighted by the number of papers published by the

and measure the efficiency of our algorithms using the lar hor in the corresponding conference for that year. There
ACPostandNetFlix datasets. re 418,236 authors, 3,571 conferences, and 49 time steps

The first datasetNIPS) is from the NIPS proceedings (years) with an average of 26,508 new edges at each time
The timestamps are publication years, so each graphl\xssliceS ep.

LEMMA 5.2. Correctness ofTrack-Proximity. The vectors
71" andr3’ in Alg. 7 provide a correct ranking of type 1 an
type 2 objects at each time step That is, the ranking is
exactly according to the proximity defined(Bi4).

Shttp: //ww cs. t oront o. edu/ ~ owei s/ dat a. ht m Zhttp://ww.informatik.uni-trier.de/ ey/db/

Rank of Proximity from VLDB to KDD

Table 2: Datasets used in evaluations !

Name nxl Avein time steps °
NIPS 2,037x1,740 308 13 nl
DM 5,095« 3,548 765 13
AC 418,236<3,571 26,508 49 -l
ACPost 418,236<3,571 1,007 1258 € sl
NetFlix 2,649,42%17,770 100,480,507 NA .
ACPost is primarily used to evaluate the scalability ::

of our algorithms. In order to obtain a larger number of o

timestamps at a finer granularity, we use posting date on 195 1097 1999 ififg 203 2005 2007
DBLP (the ‘mdate’ field in the XML archive of DBLP, which

) Figure 2: The rank of the proximity from ‘VLDB’ to ‘KDD’
represents when the paper was entered into the datab%spgyo each year

rather than publication year. Thus, each graph sfce
corresponds to one day, between 2002-01-03 and 2007 @spectively. We can also track the centrality values a$ wel
24. ACPost is otherwise similar toAC, with number of as their rank for an individual author over the years. Fig) 1(
papers as edge weights. There are 418,236 authors, 3/¥®ts the centrality ranking for some authors over the years
conferences, and 1,258 time steps (days with at least é@in, the results are consistent with intuition. For exéemp
addition into DBLP), with an average of 1,007 new edgd4ichael I. Jordon starts to have significant influence (withi
per day. top-30) in the NIPS community from 1991 on; his influence
The final datasetNetFlix, is from the Netflix prizé. rapidly increases in the following up years (1992-19954 an
Rows represent users and columns represent movies. #ays within the top-3 from 1996 on. Prof. Christof Koch
user has rated a particular movie, we connect them with @och_C’) from Caltech remains one of the most influential
unweighted edge. This dataset consists of one slice and(W#hin top-3) authors in the whole NIPS community over
use it in subsection 6.2 to evaluate the efficieRagt-Single- the years (1990-1999).
Update In total, we have 2,649,429 users, 17,770 movi%s'g'z Results orTrack-Proximity.

and 100,480,507 edges. We first report the results on til¥M dataset. We use “Global
6.2 Effectiveness: Case Studies Aggregation” to update the adjacency matrix at each time
Here, we show the experimental results for the three apgliep. In this setting, we can track the tbpnost related
cations on real datasets, all of which are consistent with gapers/authors in the data mining community for a given
intuition. guery author up to each year. Table. 4 lists the top-5 most
6.2.1 Results orffrack-Centrality. related authors for ‘Jian Pei’ over the years (2001-2007).

We apply Alg. 6 to theNIPS dataset. We use “GIobaIThe results make perfect sense: (1) the top co-author (Prof.

Aggregation” to update the adjacency mabik?). We track Jiawei Han’) is Prof. Jian Pers advisor; (2) the other top
the topk (k — 10) most central (i.e.influential) authors i collaborators are either from SUNY-Buffalo (Prof. Aidong

the whole community. Table 3 lists the results for eve hang),v\cljr_ f\r/?/m IBM-\;]\{aLsc_m (IIDrs. Philip f)l Yu,. Ha'xgn ¢
two years. The results make sense: famous authors in %nfgyld e'f alrtlg), W.t.'c ":’ SS;JeBan?r}a_ 63’ f;]nC?BMrO '
NIPS community show up in the top-10 list and their relati €1 held a faculty position a \Y-butlalo, (3) € 1ol

. . ; : L atson collaboration (‘Philip S. Yu’ and ‘Haixun Wang’) got
rankings change over time, reflecting their activity/influe

. . tronger over time.

in the whole NIPS community up to that year. For exampl%, -

Prof. Terrence J. Sejnowski (‘SejnowskKi shows in the Then, we appIyTrack-Proxm_lty_ on the_ dataseAC..

top-10 list from 1989 on and his ranking keeps going °re, we want to tr_ack thg proximity ranking for a given

in the following years (1991,1993). He remains numb air of nodes over time. Fig. 2 plots the rank of proximity
. e tom the ‘VLDB’ conference to the ‘KDD’ conference. We

1 from 1993 on. Sejnowski is one of the founders oF° o - . .

NIPS, an IEEE Fellow, and the head of the Computatior]%tcle _Global Aggrgggtlon fo update the adjacency matrix.

Neurobiology Lab at the Salk institute. The rest of the this way, proximity between the “VLDB' and *KDD

top-placed researchers include Prof. Michael I. Jord%%nferences measures the importance/_relevance of ‘KDD'
(‘JordanM’) from UC Berkeley and Prof. Geoffrey E_wrt ‘VLDB'’ up to each year. From the figure, we can see

Hinton (‘Hinton.G’) from Univ. of Toronto, well known that the rank of 'KDD" keeps going up, reaching the fifth

for their work in graphical models and neural networkgssz't(')%r;Z‘yr :0;7(;'\;"- g%?twgggp'icoog;e,rzggefzg)éT\,/l‘iEB

this order. The result makes sense: with more and more
Shttp: // www. net flixprize. con multi-disciplinary authors publishing in both commungie

Table 3: Top-10 most influential (central) authors up to egedr.

1987 1989 1991 1993 1995 1997 1999
TAbbott LT "Bower_J' 'Hinton G* 'Sejnowski_T' "Sejnowski T' 'dejnowski TT Tseinowski T7
"Burr DT "Hinton G’ 'Koch C7 'Koch C7 'Jordan M' 'Jordan_M' "Koch C'
"Denker J7 "Tesauro G' 'Bower JT "Hinton G- "Hinton &' 'Koch C” "Jordan M’
Tscofield C "Denker J°7 'Sejnowski T' "Mozer M' "Koch C') 'Hinton &7 "Hinton G'
"Bower_J' "Mead C7 'LeCun_¥' 'LeCun_¥' "Mozer M° 'Mozer M' "Mozer M’
"Brown_N' "Tenorio M' "Mozer M' 'Denker J° 'Bengig ¥ 'Dayan P' "Dayan_P'
"Carley L7 "Sejnowski_T' 'Denker J7 'Bower_J' 'Lippmagn RT 'Bengio YT "singh 5”7
"Chou_F" "Lippmann R" "Waibel AT "Kawato MT "LeCun ¥' 'Barto A' "Bengio_ Y'
"Chover_J°7 "Touretzky D" "Moody_JT "Waibel R° "Waibel A' 'Tresp V' "Tresp V'
"Eeckman_F’' "Koch_c” 'Lippmann_R' 'Simard_P' *Simard P' "Moody_J° "Moody_J7

Table 4: Top-5 most related authors for ‘Jian Pei’ up to easdry
2001 2003 2005 2007

"Jiawei Han'

'Behzad Mortazavi-RAsl’'
"Aidong Zhang'
"Philip_§. wu’
"Hongjun_Lu’

'Tiawel Han'
'Haixun_ Wang'
'Ridong Zhang”'
'Philip 8. Yu”'
'Mei Wang'

"Jiawei Han'’
"Haixun Wang'
'Philip 5. vu’
"Wel Wang'
"Aidong Zhang’

"Jiawel Han'
'Behzad Mortazavi-Asl'
"Hongjun_Lu’
"Meichun Hsu'
"shiwei Tang’

Compare with Update Time

r =l Fast-Single-Update| .
' @ Straight-Update -

running time for update and then give the total running
time for each time step. We use the two largest datasets
(ACPostandNetFlix) to measure performance.

10,000

1,000 -

=
15}
5]

6.3.1 Update Time
We first evaluaté&ast-Single-UpdateBoth ACPostandNet-
Flix are used. For each dataset, we randomly add one new
edge into the graph and compute the update time. The ex-
periments are run multiple times. We compé&sesst-Single-
Updatewith Straight-Update (which dodsx [matrix in-
version at each time step) and the result is summarized
Figure 3: Evaluation ofFast-Single-Update For both in Fig. 3—Note that the y-axis is in log-scale). On both
datasets, one edge changes at each time step. The #diasetsFast-Single-Updateequires significantly less com-
ning time is averaged over multiple runs of experiments apgdtation: onACPost, it is 64x faster (.5 seconds vs.32
shown in logarithmic scale. seconds), while oMNetFlix, it is 176x faster £2.5 seconds
vs4, 313 seconds).

(databases and data mining), ‘'KDD’ becomes more and To evaluateérast-Batch-Updatewe useACPost From
more closely related to ‘VLDB'. t = 2 and on, at each time step, we have betwées 1 and

We also test the top-queries onAC. Here, we use 7, = 18,121 edges updated. On average, there are 913 edges
“Sliding Window” (with window lengthlen = 5) to update updated at each time steg(t > 2). Note that despite the
the adjacency matrix. In this setting, we want to track thgrge number of updated edges for some time steps, the rank
top-+ most related conferences/authors for a given quesyithe difference matrix (i.emin(n,[)) at each time step is
node in the past 5 years at each time stepFig. 1(b) relatively small, ranging from 1 to 132 with an average of
lists the top-5 conferences for Dr. ‘Philip S. Yu'. The3. The results are summarized in Fig 4. We plot the mean
major research interest (top-5 conferences) for ‘Philip §pdate time vs. the numbenj of changed edges in Fig 4(a)
Yu' is changing over time. For example, in the yeargnd the mean update time vs. the ranki(7,()) of the
1988-1992, his major interest is in databases ('ICDE’ angdate matrix in Fig 4(b). Compared to the Straight-Update,
‘VLDB’), performance (‘SIGMETRICS’) and distributed Fast-Batch-Updateis again much faster, achieving 5-32x
systems (ICDCS’ and ‘PDIS’). However, during 2003speed-up. On average, it is 15x faster than Straight-Update
2007, while databases (‘ICDE’ and ‘VLDB") are still one

of his major research interests, data mining became a str8ry2 Total Running Time _))
research focus (‘KDD', ‘SDM’ and ‘ICDM’). Here, we study the total running time at each time step

o for Track-Centrality The results forTrack-Proximity are
6.3 !Ef_ﬂ_cm_zncy i . similar and omitted for space. Fdrack-Centrality we let
After initialization, at each time step, most time is spent Q¢ algorithm return both the top-10 type 1 objects and the

updating the core matri)A(-t), as well as the normalized;y, 10 type 2 objects. We use thetFlix dataset with one
adjacency matrices. In this subsection, we first report the

Mean Update Time (Sec.)
=
S
v @
]

' &

0.1

DBLP_AC_Poster NetFlix

Datasets

40

10,000

35r =l Track-Centrality| .

. . PO = =¢ lte-Alg
30l 4 @ Straight-Update
1,000

25

Fast-Batch-Update ||
+ - Straight-Update

20
100+
151

Mean Running Time (Sec)

10 1
10

° \/\/\ 1
— |
5000 10,000 15,000 20,000
of edges changed at time t 1

Mean Running Time (Sec)

t

[]

oo

- .-
DBLP_AC_Poster NetFlix
Dataset

(a) Running Time vsin
Figure 5. Overall running time at each time step Toack-
Centrality. For ACPost, there are multiple edges changed
e at each time step; and fotetFlix, there is only one edge

sor] changed at each time step. The running time is averaged in
25¢] multiple runs of experiments and it is in the logarithm scale

20k Fast-Batch-Update | |
+ - Straight-Update

40

35r

151

Mean Running Time (Sec)

o] 7,9, 5, 22], frequent substructure discovery [33], influeenc
— propagation [16], and community mining [10][12][13].
ot s s s g e In terms of centrality, Google's PageRank algo-
. i . rithm [23] is the most related. The proposidck-Centrality
(b) Running Time vsmin(7,) can actually be viewed as its generalization for dynamic bi-
Figure 4: Evaluation ofrast-Batch-Update partite graphs. As for proximity, the closest work is random
walk with restart [15, 24, 32]. The proposé&ck-Proximity
is its generalization for dynamic bipartite graphs. Otlegr-r
resentative proximity measurements on static graphsdieclu
%Ihe sink-augmented delivered current [8], cycle free ¢iffec
conductance [17], survivable network [14], and direction-
. : ware proximity [31]. Although we focus on random walk
procedure [27] to compute proximity and centrality at ea@v}th restart in this paper, our fast algorithms can be easily

time step (referred as ‘Ite-Alg”). The results are sumnediz

I o ...adapted to other random walk based measurements, such
in Fig. 5. We can see that in either case, our aIgontharl‘g [8, 31]. Also, there are a lot of applications of prox-
(Track-Centrality is much faster. For example, it takes ’) ' PP P

27.8 seconds on average on tetFlix dataset, which is imity measurements. Representative work includes connec-

155x faster over‘Straight-Update” (4,315 seconds); anOItton subgraphs [8, 17, 29], neighborhood formation in bipar

] .)
93x faster over “lte-Alg” (2,582 seconds). In either casJ([a't'Se graphs [27], content-based image retrieval [15], £10s

the update time foifrack-Centralitydominates the overallmodal correlation discovery [24], the BANKS system [1],

running time. For example, on tlRCPost dataset, updatelmk prediction [20], pattern matching [30], detecting ama-

time accounts for more than 90% of the overall running tin‘lﬁ%g;t?g:;;::s[ﬂl](s in a graph [27], ObjectRank [4] and

(2.4 seconds vs. 2.6 seconds). Thus, when we have to track) - .
; . Dynamic Graph Mining. More recently, there is an
queries for many nodes of interest, the advantag&ratk- . - LI)
increasing interest in mining time-evolving graphs, sush a

Centralityover “Ite-Alg” will be even more significant, since S L9 . .
: densification laws and shrinking diameters [19], community
at each time step we only need to do update once for a :)) .

. ; . . u wo evolution [3], dynamic tensor analysis [28], and dynamic
queries, while the running time of “Ite-Alg” will increase "
. . . communities [6, 26]. To the best of our knowledge, there
linearly with respect to the number of queries.) . - . .

is no previous work on proximity for time-evolving graphs.

7 Related Work Remotely related work in the sparse literature on the topic

In this section, we review the related work, which can #& [21]. However, we have a different setting and focus

categorized into two parts: static graph mining and dynanfigmpared with [21]: we aim to incrementally track the

graph mining. proximity and centrality for nodes of interest by quickly
Static Graph Mining. There is a lot of research workuPdating the core matrix (as well as the adjacency matrices)

on static graph mining, including pattern and law mining [#/hile in [21] the authors focus on efficiently using time
information by adding time as explicit nodes in the graph.

0

edge changed at each time step @@Post dataset with
multiple edges changed at each time step.

We compare our algorithmsTtack-Centrality) with
(i) the one that uses Straight-Update in our algorithmd (s
referred as “Straight-Update”); and (ii) that uses itemati

8 Conclusion

(11]

In this paper, we study how to incrementally track the node

proximity as well as the centrality for time-evolving bipise on .
graphs. To the best of our knowledge, we are the first to study communities from link topology.

(12]

the node proximity and centrality in this setting. The major

contributions of the paper include:

1:

(13]

Proximity and centrality definitions for time-evolving{l“]
graphs.

. Two fast update algorithmg-4st-Single-Updateand

Fast-Batch-Updatg that do not resort to approximatiory1 5]
and hence guarantee no quality loss (see Theorem 4.2).

: Two algorithms to incrementally track centrality

(Track-Centrality and proximity {(Track-Proximity, in
any-time fashion.

. . _ (17
. Extensive experlmental case-studies on several reaﬂ

datasets, showing how different queries can be gfg)
swered, achieving up tb5~176xspeed-up.
[19]

] D. Kempe, J. Kleinberg, and E. Tardos.

F. Geerts, H. Mannila, and E. Terzi. Relational linksbe
ranking. InVLDB, pages 552-563, 2004.

D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web
Ith ACM Conf. on
Hypertext and Hypermedipages 225-234, New York, 1998.
M. Girvan and M. E. J. Newman. Community structure is
social and biological networks.

M. Grotschel, C. L. Monma, and M. Stoer. Design of
survivable networks. Iidandbooks in Operations Research
and Management Science 7: Network ModHlsrth Holland,
1993.

J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifold
ranking based image retrieval. WCM Multimedia pages
9-16, 2004.

Maximizing the
spread of influence through a social netwdlbD, 2003.

Y. Koren, S. C. North, and C. Volinsky. Measuring and
extracting proximity in networks. IKDD, 2006.

D. C. Kozen.The Design and Analysis AlgorithmSpringer-
Verlag, 1992.

J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graples o

We can achieve such speedups while providing exact an- ime: densification laws, shrinking diameters and possible
swers because we carefully leverage the fact that the rank of explanations. I'KDD, pages 177-187, 2005.

graph updates is small, compared to the size of the origif@] D. Liben-Nowell and J. Kleinberg.

matrix. Our experiments on real data show that this typycall

translates to at least an order of magnitude speedup. [21]
References [22]
(23]

(1]

(2]
(3]

(4]

(5]

(6]

(7]
(8]
(9]

[10]

B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. K,

and S. S. Parag. Banks: Browsing and keyword searching in
relational databases. WLDB, pages 1083—-1086, 2002.

R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of th4]
world wide web.Nature (401):130-131, 1999.

L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and
X. Lan. Group formation in large social networks: membef25]
ship, growth, and evolution. IKDD, pages 44-54, 2006.

A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objec[ZG]
trank: Authority-based keyword search in databases. In
VLDB, pages 564-575, 2004.

A. Broder, R. Kumar, F. Maghoull, P. Raghavan, S. R&27]
jagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph struc-
ture in the web: experiments and models. WWW Conf.
2000. (28]
Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng.
Evolutionary spectral clustering by incorporating tengor [29]
smoothness. IKDD, pages 153-162, 2007.

S. Dorogovtsev and J. Mendes. Evolution of network&30]
Advances in Physic$1:1079-1187, 2002.

C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discov
ery of connection subgraphs. KDD, pages 118-127, 2004. (31]
M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-
law relationships of the internet topolog8!GCOMM pages [
251-262, Aug-Sept. 1999.

G. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-
organization and identification of web communitielEEE (33]
Computer 35(3), Mar. 2002.

32] H. Tong, C. Faloutsos, and J.-Y. Pan.

The link prediction
problem for social networks. IRroc. CIKM, 2003.

E. Minkov and W. W. Cohen. An email and meeting assistant
using graph walks. I€EAS 2006.

M. E. J. Newman. The structure and function of complex
networks.SIAM Review45:167-256, 2003.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project989
Paper SIDL-WP-1999-0120 (version of 11/11/1999).
J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu.
tomatic multimedia cross-modal correlation discovery.
KDD, pages 653—658, 2004.

W. Piegorsch and G. E. Casella. Inverting a sum of meadric
In SIAM Reviewvolume 32, pages 470-470, 1990.

J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. YuplGra
scope: parameter-free mining of large time-evolving gsaph
In KDD, pages 687-696, 2007.

J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbo
hood formation and anomaly detection in bipartite graphs. |
ICDM, pages 418-425, 2005.

J. Sun, D. Tao, and C. Faloutsos. Beyond streams antigrap
dynamic tensor analysis. KDD, pages 374-383, 2006.

H. Tong and C. Faloutsos. Center-piece subgraphs:lgrob
definition and fast solutions. IKDD, pages 404—413, 2006.
H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Reabt
best-effort pattern matching in large attributed graphs. |
KDD, pages 737-746, 2007.

H. Tong, C. Faloutsos, and Y. Koren. Fast direction4@wva
proximity for graph mining. IrKDD, pages 747-756, 2007.
Random walk with
restart: Fast solutions and applicationKnowledge and
Information Systems: An International Journal (KAIS)07.

D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed
frequent-pattern sets. MLDB, pages 709720, 2005.

Au-
In

