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ABSTRACT
How can we find communities in dynamic networks of social
interactions, such as who calls whom, who emails whom, or
who sells to whom? How can we spot discontinuity time-
points in such streams of graphs, in an on-line, any-time
fashion? We propose GraphScope, that addresses both prob-
lems, using information theoretic principles. Contrary to the
majority of earlier methods, it needs no user-defined param-
eters. Moreover, it is designed to operate on large graphs,
in a streaming fashion. We demonstrate the efficiency and
effectiveness of our GraphScope on real datasets from sev-
eral diverse domains. In all cases it produces meaningful
time-evolving patterns that agree with human intuition.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining

General Terms
Algorithms

1. INTRODUCTION
Graphs arise naturally in a wide range of disciplines and

application domains, since they capture the general notion
of an association between two entities. However, the as-
pect of time has only recently begun to receive some atten-
tion [15, 20]. Some examples of the time-evolving graphs
include: (a) Network traffic events indicate ongoing com-
munication between source and destination hosts, similar
to the NETWORK dataset in our experiments; (b) Email net-
works associate a sender and a recipient at a given date, like
the ENRON data set [2] in the experiments; (c) Call detail
records in telecommunications networks associate a caller
with a callee. The set of all conversation pairs over each
week forms a graph that evolves over time, like the pub-
licly available ‘CELLPHONE’ dataset of MIT users calling each
other [1]; (d) Transaction data: in a financial institution,
who accessed what account, and when; (e) In a database
compliance setting [4], again we need to record which user
accessed what data item and when.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

To complicate matters further, large amounts of data such
as those in the above examples are continuously collected
and patterns are also changing over time. Therefore, batch
methods for pattern discovery are not sufficient. We need
tools that can incrementally find the communities and mon-
itor the changes. In summary, there are two key problems
that need to be addressed:

P1) Community discovery: Which groups or communities
of nodes are associated with each other?

P2) Change detection: When does the community struc-
ture change and how to quantify the change?

Moreover, we want to answer these questions (a) without re-
quiring any user-defined parameters, and (b) in a streaming
fashion.

For example, we want to answer questions such as: How
do the network hosts interact with each other? What kind
of host groups are there, e.g., inactive/active hosts; servers;
scanners? Who emails whom? Do the email communi-
ties in a organization such as ENRON remain stable, or do
they change between workdays (e.g., business-related) and
weekends (e.g., friend and relatives), or during major events
(e.g.,the FBI investigation and CEO resignation)?

We propose GraphScope, which addresses both of the
above problems simultaneously. More specifically, Graph-
Scope is an efficient, adaptive mining scheme on time-evolving
graphs. Unlike many existing techniques, it requires no user-
defined parameters, and it operates completely automati-
cally, based on the Minimum Description Length (MDL)
principle. Furthermore, it adapts to the dynamic environ-
ment by automatically finding the communities and deter-
mining good change-points in time.

In this paper we consider bipartite graphs, which treat
source and destination nodes separately (see example in Fig-
ure 2). As will become clear later, we discover separate
source and destination partitions, which are desirable in sev-
eral application domains. Nonetheless, our methods can be
easily modified to deal with unipartite graphs, by constrain-
ing the source-partitions to be the same as the destination-
partitions [6].

The main insight of dealing with such graphs is to group
“similar” sources together into source-groups (or row-groups),
and also “similar” destinations together, into destination-
groups (or column-groups). Examples in Section 6.2 show
how much more orderly (and easier to compress) the adja-
cency matrix of a graph is, after we strategically re-order its
rows and columns. The exact definition of “similar” is actu-
ally simple, and rigorous: the most similar source-partitions



for a given source node is the one that leads to small encod-
ing cost (see Section 4 for more details).

Furthermore, if these communities (source and destina-
tion partitions) do not change much over time, consecutive
snapshots of the evolving graphs have similar descriptions
and can also be grouped together into a time segment, to
achieve better compression. Whenever a new graph snap-
shot cannot fit well into the old segment (in terms of com-
pression), GraphScope introduces a change-point, and starts
a new segment at that time-stamp. Those change points of-
ten detect drastic discontinuities in time. For example on
the ENRON dataset, the change points all coincide with im-
portant events related to the ENRON company, as shown
in Figure 1 (more details in Section 6.2).

Enron timeline

19 Nov 2001: Enron restates 3rd quarter earnings
29 Nov 2001: Dynegy deal collapses

Nov 1999: Enron launched

14 Aug 2001: Kenneth Lay takes over as CEO

10 Jan 2002: DOJ confirms criminal investigation begun

23 Jan 2002: Kenneth Lay resigns from CEO
23 Jan 2002: FBI begins investigation of document shredding

30 Jan 2002: Enron names Stephen F. Cooper new CEO
4 Feb 2002: Lay implicated in plot to inflate profits and hide losses

24 Apr 2002: House passes accounting reform package
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Feb 2001: Jeffrey Skilling takes over as CEO

Jun 2001: Rove divests his stocks in energy

Figure 1: ENRON dataset (Best viewed in color). Rela-

tive compression cost versus time. Large cost indicates

change points, which coincide with the key events. E.g.,

at time-tick 140 (Feb 2002), CEO Ken Lay was impli-

cated in fraud.

Contributions. Our proposed approach, GraphScope, mon-
itors communities and their changes in a stream of graphs
efficiently. It has the following key properties:

• Parameter-free: GraphScope is completely automatic,
requiring no parameters from the user (like number of
communities, thresholds to assess community drifts,
and so on). Instead, it is based on sound information-
theoretic principles, specifically, MDL.

• Adaptive: It can effectively track communities over
time, discovering both communities as well as change-
points in time, that agree with human intuition.

• Streaming: It is fast, incremental and scalable for the
streaming environment.

We demonstrate the efficiency and effectiveness of our ap-
proach in discovering and tracking communities in real graphs
from several domains.

The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 introduces some nec-
essary definitions and formalizes the problem. Section 4
presents the objective function. Section 5 presents our pro-
posed method to search for an optimal solution, Section 6
shows the experimental evaluation and Section 7 concludes.

2. RELATED WORK
Here we discuss related work from three areas: mining

static graphs, mining dynamic graphs, and stream mining.

2.1 Static Graphs
Graph mining has been a very active area in the data

mining community. From the exploratory aspect, Faloutsos
et al. [10] have shown the power-law distribution on the
Internet graph. Kumar et al. [14] discovered the bow-tie
model for web graphs.

From the algorithmic aspect, graph partitioning has at-
tracted much interest, with prevailing methods being ME-
TIS [12] and spectral partitioning [16]. Even in these top-
performing methods, users must specify the number of par-
titions k. Moreover, they typically also require a measure of
imbalance between the two pieces of each cut.

Information-theoretic Co-clustering [9] simultaneously re-
orders the rows and columns of a normalized contingency ta-
ble or a two-dimensional probability distribution, where the
number of clusters has to be specified. The Cross-association
method [7] formulates the co-clustering problem as a binary
matrix compression problem. Noble and Cook [17] propose
an entropy-based anomaly detection scheme for graphs.

All these methods deal with static matrices or graphs,
while GraphScope is designed to work with dynamic streams.
Moreover, most of methods except for cross-association re-
quire some user-defined parameters, which may be difficult
to set and which may dramatically affect the final result, as
observed in [13]. Keogh et al. [13] proposed the notion of
parameter free data mining. GraphScope shares the same
spirit but focuses on different problems.

In addition to graph mining, several storage schemes [11,
18] have been proposed to compress large binary matrices
(graphs) by column reordering. However, none of those
scheme perform both column and row reordering and their
focus is on compression rather than mining.

2.2 Dynamic Graphs
From the exploratory viewpoint, Leskovec et al. [15] dis-

covered the shrinking diameter phenomena on time-evolving
graphs. Backstrom et al. [5] study community evolution in
social networks.

From the algorithmic aspect, Sun et al. [20] present dy-
namic tensor analysis, which incrementally summarizes ten-
sor streams (high-order graph streams) as smaller core ten-
sor streams and projection matrices. This method still re-
quires user-defined parameters (like the size of the core ten-
sor). Moreover, it gives lossy compression. Aggarwal and
Yu [3] propose a method to selectively store a subset of
graphs to approximate the entire graph stream and to find
community changes in time-evolving graphs based on the
user specified time interval and the number of communi-
ties. Again, our GraphScope framework avoids all these
user-defined parameters.

3. PROBLEM DEFINITION
In this section, we formally introduce neccessary notation

and formulate the problems.

3.1 Notation and definition
Calligraphic letters always denote graph streams or graph

stream segments (consisting of one or more graph snapshots),



Sym. Definition

G, G(s) Graph stream, Graph segment
t Timestamp, t ≥ 1.
m, n Number of source(destination) nodes.

G(t) Graph at time t (m× n adjacency matrix).
i, j Node indices, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

G
(t)
i,j Indicator for edge (i, j) at time t.

s Graph segment index, s ≥ 1.
ts Starting time of s-th segment.
ks,`s Number of source (dest.) partitions for segment s.
p, q Partition indices, 1 ≤ p ≤ ks, 1 ≤ q ≤ `s.

I
(s)
p Set of sources belonging to the p-th partition, dur-

ing the s-th segment.

J
(s)
q Similar to I

(s)
p , but for destination nodes.

m
(s)
p Source partition size, m

(s)
p ≡ |I(s)

p |, 1 ≤ p ≤ ks.

n
(s)
p Dest. partition size, n

(s)
p ≡ |J(s)

p |, 1 ≤ p ≤ `s.

G(s)
p,q Subgraphs induced by p-th and q-th partitions of

segment s, i.e., subgraph segment

|G(s)
p,q| Size of subgraphs segment, |G(s)

p,q| := m
(s)
p n

(s)
q (ts+1−

ts).

|E|(s)p,q Number of edges in G(s)
p,q

ρ
(s)
p,q Density of G(s)

p,q,
|E|(s)p,q

|G(s)
p,q|

H(.) Shannon entropy function

Table 1: Definitions of symbols

while individual graph snapshots are denoted by non-calli-
graphic, upper-case letters. Superscripts in parentheses de-
note either timestamps t or graph segment indices s, accord-
ingly. Similarly, subscripts denote either individual nodes
i, j or node partitions p, q.

Definition 3.1 (Graph stream). A graph stream G
is a sequence of graphs G(t), i.e.,

G := {G(1), G(2), . . . , G(t), . . .},

which grows indefinitely over time. Each of these graphs
links m source nodes to n destination nodes.

For example in Figure 2, the first row shows the first three
graphs in a graph stream, where m = 4 and n = 3. Fur-
thermore, the graphs are represented as sparse matrices in
the bottom of Figure 2 (a black entry is 1, which indicates
an edge between the corresponding nodes; likewise a white
entry is 0).

In general, each graph may be viewed as an m×n binary
adjacency matrix, where rows 1 ≤ i ≤ m correspond to
source nodes and columns 1 ≤ j ≤ n correspond to destina-
tion nodes. We use sparse representation of the matrix (i.e.,
only non-zero entries are stored) whose space consumption
is similar to adjacency list representation. Without loss of
generality, we assume m and n are the same for all graphs in
the stream; if not, we can introduce all-zero rows or columns
in the adjacency matrices.

One of our goals is to track how the structure of the graphs
G(t), t ≥ 1, evolves over time. To that end, we will group
consecutive timestamps into segments.

Definition 3.2 (Graph stream segment). The set of
graphs between timestamps ts and ts+1−1 (inclusive) consist

the s-th segment G(s), s ≥ 1, which has length ts+1 − ts,

G(s) := {G(ts), G(ts+1), . . . , G(ts+1−1)}.

Intuitively, a “graph stream segment” (or just “graph seg-
ment”) is a set of consecutive graphs in a graph stream. For

example in Figure 2, G(1) is a graph segment consisting of
two graph G(1) and G(2).

Next, within each segment, we will partition the source
and destination nodes into source partitions and destination
partitions, respectively.

Definition 3.3 (Graph segment partitions). For
each segment s ≥ 1, we partition source nodes into ks source
partitions and destination nodes into `s destination parti-
tions. The set of source nodes that are assigned into the p-

th source partition 1 ≤ p ≤ ks is denoted by I
(s)
p . Similarly,

the set of destination nodes assigned to the q-th destination

partition is denoted by J
(s)
q , for 1 ≤ q ≤ `s.

The sets I
(s)
p (1 ≤ p ≤ ks) partition the source nodes, in the

sense that I
(s)
p ∩I

(s)

p′ = ∅ for p 6= p′, while
S

p I
(s)
p = {1, . . . , m}.

Similarly, the sets J
(s)
q (1 ≤ q ≤ ls) partition the destination

nodes. For example in Figure 2, the first graph segment

G(1) has source partitions I
(1)
1 = {1, 2}, I

(1)
2 = {3, 4}, and

destination partitions J
(1)
1 = {1}, J

(1)
2 = {2, 3} where k1 =

2, `1 = 2. We can similarly define source and destination
partition for the second graph segment G(2), where k2 = 3,
`2 = 3.

3.2 Problem formulation
In this paper, the ultimate goals are to find communities

on time-evolving graphs along with the change-points, if any.
Thus, the following two problems need to be addressed.

Problem 1 (Partition Identification). Given a

graph stream segment G(s), how to find good partitions of
source and destination nodes, which summarize the funda-
mental community structure.

The meaning of “good” will be made precise in the next sec-
tion, which formulates our cost objective function. However,
to obtain an answer for the above problem, two important
sub-questions need to be answered (see Section 5.1):

• How to assign the m source and n destination nodes
into ks source and `s destination partitions?

• How to determine ks and `s?

Problem 2 (Time Segmentation). Given a graph
stream G, how can we incrementally construct graph seg-
ments, by selecting good change points ts.

Section 5.2 presents the algorithms and formalizes the notion
of “good” for both problems above. We name the whole
analytic process GraphScope.

4. GRAPHSCOPE ENCODING OBJECTIVE
Our mining framework is based on one form of the Min-

imum Description Length (MDL) principle and employs a
lossless encoding scheme for a graph stream. Our objective
function estimates the number of bits needed to encode the
full graph stream so far. Our proposed encoding scheme
takes into account both the community structures, as well
as their change points in time, in order to achieve a concise
description of the data. The fundamental trade-off that de-
cides the “best” answers to problems 1 and 2 in Section 3.2



Figure 2: Notation illustration: A graph stream with 3

graphs in 2 segments. First graph segment consisting

of G(1) and G(2) has two source partitions I
(1)
1 = {1, 2},

I
(1)
2 = {3, 4}; two destination partitions J

(1)
1 = {1}, J

(1)
2 =

{2, 3}. Second graph segment consisting of G(3) has three

source partitions I
(2)
1 = {1}, I

(2)
2 = {2, 3}, I

(2)
3 = {4}; three

destination partitions J
(2)
1 = {1}, J

(2)
2 = {2}, J

(2)
2 = {3}.

is between (i) the number of bits needed to describe the
communities (or, partitions) and their change points (or,
segments) and (ii) the number of bits needed to describe
the individual edges in the stream, given this information.

We begin by first assuming that the change-points as well
the source and destination partitions for each graph seg-
ment are given, and we show how to estimate the bit cost
to describe the individual edges (part (ii) above). Next, we
show how to incorporate the partitions and segments into
an encoding of the entire stream (part (i) above).

4.1 Graph encoding
In this paper, a graph is presented as a m-by-n binary

matrix. For example in Figure 2, G(1) is represented as

G(1) =

0BB@
1 0 0
1 0 0
0 1 1
0 0 1

1CCA (1)

Conceptually, we can store a given binary matrix as a bi-
nary string with length mn, along with the two integers m
and n. For example, equation 1 can be stored as 1100 0010 0011
(in column major order), along with two integers 4 and 3.

To further save space, we can adopt some standard lossless
compression scheme (such as Huffman coding, or arithmetic
coding [8]) to encode the binary string, which formally can
be viewed as a sequence of realizations of a binomial random
variable X. The code length for that is accurately estimated
as mnH(X) where H(X) is the entropy of variable X. For

notational convenience, we also write that as mnH(G(t)).
Additionally, three integers need to be stored: the matrix
sizes m and n, and the number of ones in the matrix (i.e.,
the number of edges in the graph) denoted as |E| 1. The

1|E| is needed for computing the probability of ones or ze-
ros, which is required for several encoding scheme such as
Huffman coding

cost for storing three integers is log?|E|+log?m+log?n bits,
where log?is the universal code length for an integer2. Notice
that this scheme can be extended to a sequence of graphs in
a segment.

More generally, if the random variable X can take values
from the set M , with size |M | (a multinomial distribution),
the entropy of X is

H(X) = −
P

x∈M p(x) log p(x).

where p(x) is the probability that X = x. Moreover, the
maximum of H(X) is log |M | when p(x)= 1

|M| for all x ∈M

(pure random, most difficult to compress); the minimum is
0 when p(x) = 1 for a particular x ∈ M (deterministic and
constant, easiest to compress). For the binomial case, if all
symbols are all 0 or all 1 in the string, we do not have to
store anything because by knowing the number of ones in
the string and the sizes of matrix, the receiver is already
able to decode the data completely.

With this observation in mind, the goal is to organize the
matrix (graph) into some homogeneous sub-matrices with
low entropy and compress them separately, as we will de-
scribe next.

4.2 Graph Segment encoding
Given a graph stream segment G(s) and its partition as-

signments, we can precisely compute the cost for transmit-
ting the segment as two parts: 1) Partition encoding cost:
the model complexity for partition assignments, 2) Graph
encoding cost: the actual code for the graph segment.

Partition encoding cost
The description complexity for transmitting the partition
assignments for graph segment G(s) consists of the following
terms:

First, we need to send the number of source and destina-
tion nodes m and n using log?m+log?n bits. Note that, this
term is constant, which has no effect on the choice of final
partitions.

Second, we shall send the number of source and destina-
tion partitions which is log?ks + log?`s.

Third, we shall send the source and destination partition
assignments. To exploit the non-uniformity across parti-
tions, the encoding cost is mH(P ) + nH(Q) where P is a

multinomial random variable with the probability pi =
m

(s)
i

m

and m
(s)
i is the size of i-th source partition 1 ≤ i ≤ ks).

Similarly, Q is another multinomial random variable with

qi =
n
(s)
i
n

and n
(s)
i is the size of i-th destination partition,

1 ≤ i ≤ `s.
For example in Figure 2, the partition sizes for first seg-

ment G(1) are m
(1)
1 = m

(1)
2 = 2, n

(1)
1 = 1, and n

(1)
2 = 2; the

partition assignments for G(1) costs −4( 2
4

log( 2
4
)+ 2

4
log( 2

4
))−

3( 1
3

log( 1
3
) + 2

3
log( 2

3
)) bits.

In summary, the partition encoding cost for graph seg-
ment G(s) is

C(s)
p := log?m + log?n + log?ks + log?`s + (2)

mH(P ) + nH(Q)

2To encode a positive integer x, we need log?x ≈ log2 x +
log2 log2 x + . . ., where only the positive terms are retained
and this is the optimal length, if the range of x is un-
known [19]



where P and Q are multinomial random variables for source
and destination partitions, respectively.

Graph encoding cost
After transmitting the partition encoding, the actual graph
segment G(s) is transmitted as ks`s subgraph segments. To
facilitate the discussion, we define the entropy term for a

subgraph segment G(s)
p,q as

H(G(s)
p,q) = −

`
ρ(s)

p,q log ρ(s)
p,q + (1− ρ(s)

p,q) log(1− ρ(s)
p,q)

´
(3)

where ρ
(s)
p,q =

|E|(s)p,q

|G(s)
p,q|

is the density of subgraph segment G(s)
p,q.

Intuitively, H(G(s)
p,q) quantifies how difficult it is to compress

the subgraph segment G(s)
p,q. In particular, if the entire sub-

graph segment is all 0 or all 1 (the density is exactly 0 or
1), the entropy term becomes 0.

With this, the graph encoding cost is

C(s)
g :=

ksX
p=1

`sX
q=1

`
log?|E|(s)p,q + |G(s)

p,q| ·H(G(s)
p,q)

´
. (4)

where |E|(s)p,q is the number of edges in the (p, q) sub-graphs

of segment s; |G(s)
p,q| is the size of sub-graph segment, i.e,

m
(s)
p n

(s)
q (ts+1−ts), and H(G(s)

p,q) is the entropy of the subgraph
segment defined in equation 3.

In the sub-graph segment G(1)
2,2 of Figure 2, the number

of edges |E|(1)2,2 = 3+4, G(1)
2,2 has the size |G(1)

2,2| = 2× 2×2,

the density ρ
(1)
2,2 = 7

8
, and the entropy H(G(1)

2,2)=−( 7
8

log 7
8
+

1
8

log 1
8
).

Putting everything together, we obtain the segment en-
coding cost as the follows:

Definition 4.1 (Segment encoding cost).

C(s) := log?(ts+1 − ts) + C(s)
p + C(s)

g . (5)

where ts+1− ts is the segment length, C
(s)
p is the partition

encoding cost, C
(s)
g is the graph encoding cost.

4.3 Graph stream encoding
Given a graph stream G, we partition it into a number

of graph segments G(s)(s ≥ 1) and compress each segment
separately such that the total encoding cost is small.

Definition 4.2 (Total cost). The total encoding cost
is

C :=
P

s C(s). (6)

where C(s) is the encoding cost for s-th graph stream segment.

For example in Figure 2, the encoding cost C up to times-
tamp 3 is the sum of the costs of two graph stream segments
G(1) and G(2).

Intuition. Intuitively, our encoding cost objective tries to
decompose the graph into subgraphs that are homogeneous,
i.e., close to either fully-connected (cliques) or fully-discon-
nected. Additionally, if such cliques are stable over time,
then it places subsequent graphs into the same segment.
The encoding cost penalizes a large number of cliques or lack
of homogeneity. Hence, our model selection criterion favors
simple enough decompositions that adequately capture the
essential structure of the graph over time.

Having defined the objective precisely in equation 3 and
equation 4, the next step is to search for optimal partition
and time segmentation. However, finding the optimal solu-
tion is NP-hard3. Next, in Section 5, we present an alter-
nating minimization method coupled with an incremental
segmentation process to perform the overall search.

5. GRAPHSCOPE
In this section we describe our method, GraphScope by

solving the two problems proposed in Section 3.2. The goal
is to find the appropriate number and position of change-
points, and the number and membership of source and des-
tination partitions so that the cost of (6) is minimized. Ex-
haustive enumeration is prohibitive, and thus we resort to
alternating minimization. Note that we drop the subscript
s on ks and `s whenever it is clear from the context.

Specifically, we have two steps: (a) how to find good com-
munities (source and destination partitions), for a given set
of graph snapshots that belong to the same segment. (b)
when to declare a time-tick as a change point and start a
new graph segment. We describe each next.

5.1 Partition Identification
Here we explain how to find source and destination par-

titions for a given graph segment G(s). In order to do that,
we need to answer the following two questions:

• How to find the best partitioning given the number of
source and destination partitions?

• How to search for the appropriate number of source
and destination partitions?

Next, we present the solution for each step.

Algorithm 1: ReGroup(Graph Segment G(s); partition

size k,`; initial partitions I(s), J(s))

Compute density ρ
(s)
p,q for all p, q based on I(s), J(s).1

repeat

forall source s in G(s) do2

// assign s to the most similar partition

s is split in ` parts3

compute source density pi for each part4

assign s to source partition with the minimal5

encoding cost (Equation 8).

Update destination partitions similarly6

until no change;7

Finding the best partitioning
Given the number of the best source and destination par-
titions k and `, we want to re-group sources and destina-
tions into the better partitions. Typically this regrouping
procedure alternates between source and destination nodes.
Namely, we update the source partitions with respect to the
current destination partitions, and vice versa. More specifi-
cally, we alternate the following two steps until it converges:

• Update source partitions: for each source (a row of
the graph matrix), consider assigning it to the source
partition that incurs the smallest encoding cost

3It is NP-hard since, even allowing only column re-ordering,
a reduction to the TSP problem can be found [11].



• Update destination partitions: Similarly, for each
destination (column), consider assigning it to the des-
tination partition that yields smaller encoding cost.

The cost of assigning a row to a row-group is discussed later
(see (8)). The pseudo-code is listed in Algorithm 1. The
initialization of Algorithm 1 is discussed separately in Sec-
tion 5.3.

Determining the number of partitions
Given different values for k and `, we can easily run Al-
gorithm 1 and choose those leading to a smaller encoding
cost. However, the search space for k and ` is still too large
to perform exhaustive tests. The central idea is to do local
search around some initial partition assignments, and adjust
the number of partitions k and ` as well as the partition as-
signments based on the encoding cost.

Algorithm 2: SearchKL(Graph Segment G(s); initial

partition size k,`; initial partitions I(s), J(s))

repeat1

// try to merge source partitions

repeat2

Find the source partition pair (x, y) s.t. merging3

x and y gives smallest encoding cost for G(s).
if total encoding decrease then merge x,y4

until no more merge;5

// try to split source partition

repeat6

Find source partition x with largest average7

entropy per node.
foreach source s in x do8

if average entropy reduces without s then9

assign s to the new partition10

ReGroup(G(s), updated partitions)11

until no decrease in encoding cost ;12

Search destination partitions similarly13

until no changes;14

Cost computation for partition assignments
Here we present the details of how to compute the encod-
ing cost of assigning a node to a particular partition. Our
discussion focuses on assigning a source node to a source
partition. The assignment for a destination node is sym-
metric.

Recall a graph segment G(s) consists of (ts+1− ts) graphs,

G(ts), . . . , G(ts+1−1). For example in Figure 2, G(1) consists
of 2 graphs, G(1) and G(2). Likewise, every source node in a
graph segment G(s) is associated with (ts+1−ts) sets of edges
in these (ts+1 − ts) graphs. Therefore, the total number of

possible edges out of one source node in G(s) is (ts+1 − ts)n.

Furthermore, the destination partitions J
(s)
i divide the des-

tination nodes into ` disjoint sets with size n
(s)
i (1 ≤ i ≤ `,P

i n
(s)
i = n). For example, G(1) of Figure 2 has two desti-

nation partitions (` = 2), where the first destination parti-

tion J
(1)
1 = {1}, and the second destination partition J

(1)
2 =

{2, 3}.
Similarly, all the edges from a single source node in graph

segment G(s) are also split into these ` sets. In G(1) of Fig-

ure 2, the edges from the 4-th source node are split into two

sets, where the first set J
(1)
1 has 0 edges and the second set

J
(1)
2 3 edges4.
More formally, the edge pattern out of a source node is

generated from ` binomial distributions pi(1 ≤ i ≤ `) with
respect to ` destination partitions. Note that pi(1) is the
density of the edges from that source node to the destination

partition J
(s)
i , and pi(0) = 1−pi(1). In G(1) of Figure 2, the

4-th source node has p1(1) = 0 since there are 0 edges from

4 to J
(1)
1 = {1}, and p1(1) = 3

4
since 3 out of 4 possible edges

from 4 to J
(2)
1 = {2, 3}.

One possible way of encoding the edges of one source node
is based on precisely these distributions pi, but as we shall
see later, this is not very practical. More specifically, using
the “true” distributions pi, the encoding cost of the source
node’s edges in the graph segment G(s) would be

C(p) = (ts+1 − ts)
P`

i=1 niH(pi) (7)

where (ts+1 − ts) is the number of graphs in the graph seg-
ment, n is the number of possible edges out of a source node
for each graph5, H(pi) =

P
x={0,1} pi(x) log pi(x) is the en-

tropy for the each source node’s partition.
In G(1) of Figure 2, the number of graphs is ts+1− ts =

3−1=2; the number of possible edges out of the 4-th source
node n = 3; therefore, the 4-th source node costs 2×3×(0 +
3
4

log 3
4
+ 1

4
log 1

4
) = 2.25. Unfortunately, this is not practical

to do so for every source node, because the model complexity
is too high. More specifically, we have to store additional
m` integers in order to decode all source nodes.

The practical option is to group them into a handful of
source partitions and to encode/decode one partition at a
time instead of one node at a time. Similar to a source node,
the edge pattern out of a source partition is also generated
from ` binomial distributions qi (1 ≤ i ≤ `). Now we en-
code the i-th source node based on the distribution qi for a
partition instead of the “true” distribution pi for the node.
The encoding cost is

C(p,q) = (ts+1 − ts)
P`

i=1 niH(pi,qi) (8)

where H(pi,qi) =
P

x={0,1} pi(x) log qi(x) is the cross-entro-

py. Intuitively, the cross-entropy is the encoding cost when
using the distribution qi instead of the “true” distribution
pi. In G(1) of Figure 2, the cost of assigning the 4-th node to

second source partition I
(1)
2 is 2×3×(0+3

4
log 7

8
+1

4
log 1

8
) = 2.48

which is slightly higher than using the true distribution that
we just computed (2.25). However, the model complexity is
much lower, i.e., k` integers are needed instead of m`.

5.2 Time Segmentation
So far, we have discussed how to partition the source

and destination nodes given a graph segment G(s). Now we
present the algorithm to construct the graph segments in-
crementally when new graph snapshots at arrive every time-
tick. Intuitively, we want to group “similar” graphs from
consecutive timestamps into one graph segment and encode
them all together. For example, in Figure 2, graphs G(1)

and G(2) are similar (only one different edge), and therefore

4One edge from 4 to 3 in G(1), two edges from 4 to 2 and 3
in G(2) in Figure 2.
5 (ts+1 − ts)n is the total number of possible edges of a
source node in the graph segment



we group them into one graph segment, G(1). On the other
hand, G(3) is quite different from the previous graphs, and
hence we start a new segment G(2) whose first member is
G(3).

The guiding principle here is still the encoding cost. More
specifically, the algorithm will combine the incoming graph
with the current graph segment if there is a storage benefit,
otherwise we start a new segment with that graph. The
meta-algorithm is listed in Algorithm 3.

Algorithm 3: GraphScope(Graph Segment G(s); En-

coding cost co; New Graph G(t)

output: updated graph segment, new partition
assignment I(s), J(s)

Compute new encoding cn of G(s) S
{G(t)}1

Compute encoding cost c for just G(t)
2

// check if there is any encoding benefit

if cn − co < c then3

// add G(t) in G(s)

G(s) ← G(s) S
{G(t)}4

SearchKL for updated G(s)
5

else6

// start a new segment from G(t)

G(s+1) := {G(t)}7

SearchKL for new G(s+1)
8

5.3 Initialization
Once we decide to start a new segment, how should we ini-

tialize the number and membership of its partitions? There
are several ways to do the initialization. Trading-off con-
vergence speed versus compression quality, we propose and
study two alternatives:

Fresh-start. One option is to start from a small k and `,
typically k = 1 and ` = 1, and progressively increase them
(see Algorithm 2) as well as re-group sources and destina-
tions (see Algorithm 1). From our experiments, this scheme
is very effective in leading to a good result. In terms of
computational cost, it is relatively fast, since we start with
small k and `.

Resume. For time evolving graphs, consecutive graphs of-
ten have a strong similarity. We can leverage this similarity
in the search process by starting from old partitions. More
specifically, we initialize ks+1 and `s+1 to ks and `s, respec-
tively. Additionally, we initialize I(s+1) and J(s+1) to I(s) and
J(s). We study the relative CPU performance of fresh-start
and resume in Section 6.3.

6. EXPERIMENTAL EVALUATION
In this section, we will evaluate the result on both com-

munity discovery and change detection of GraphScope us-
ing several real, large graph datasets. We first describe the
datasets in Section 6.1. Then we present our experiments,
which are designed to answer the following two questions:

• Mining Quality: How good is our method in terms
of finding meaningful communities and change points
(Section 6.2).

• Speed: How fast is it, and how does it scale up (Sec-
tion 6.3).

Finally, we present some additional mining observations
that our method automatically identifies. To the best of our
knowledge, no other parameter-free and incremental method
for time-evolving graphs has been proposed to date. Our
goal is to automatically determine the best change-points in
time, as well as the best node partitionings, which concisely
reveal the basic structure of both communities as well as
their change over time. It is not clear how parameters of
other methods (e.g., number of partitions, graph similarity
thresholds, etc) should be set for these methods to attain
this goal. GraphScopeis fully automatic and, as we will
show, still able to find meaningful communities and change
points.

6.1 Datasets
In this section, we describe the datasets in our experi-

ments.

name m-by-n avg.|E| time T
NETWORK 29K-by-29K 12K 1, 222
ENRON 34k-by-34k 15K 165
CELLPHONE 97-by-3764 430 46
DEVICE 97-by-97 689 46
TRANSACTION 28-by-28 132 51

Table 2: Dataset summary

The NETWORK Dataset
The traffic trace consists of TCP flow records collected at
the backbone router of a class-B university network. Each
record in the trace corresponds to a directional TCP flow
between two hosts, with timestamps indicating when the
flow started and finished. With this traffic trace, we use a
window size of one hour to construct the source-destination
graph stream. Each graph is represented by a sparse ad-
jacency matrix with the rows and the columns correspond-
ing to source and destination IP addresses, respectively. An
edge in a graph G(t) means that there exist TCP flows (pack-
ets) sent from the i-th source to the j-th destination during
the t-th hour. The graphs involve m=n=21,837 unique cam-
pus hosts (the number of source and destination nodes) with
a per-timestamp average of over 12K distinct connections
(the number of edges). The total number of timestamps T
is 1,222. Figure 3(a) shows an example of superimposing6 all
source-destination graphs in one time segment of 18 hours.
Every row/column corresponds to a source/destination; the
dot there indicates there is at least a packet from the source
to the destination during that time segment. The graphs
are correlated, with most of the traffic to or from a small set
of server-like hosts.

GraphScope automatically exploits the sparsity and cor-
relation by organizing the sources and destinations into ho-
mogeneous groups as shown in Figure 3(b).

The ENRON Dataset
This consists of the email communications in Enron Inc.
from Jan 1999 to July 2002 [2]. We construct sender-to-
recipient graphs on a weekly basis. The graphs have m =
n = 34, 275 senders/recipients (the number of nodes) with

6 Two graphs are superimposed together by taking the union
of their edges.



(a) before (b) after

Figure 3: NETWORK before and after GraphScope for the

graph segment between Jan 7 1:00, 2005 and Jan 7 19:00,

2005. GraphScope successfully rearrange the sources

and destinations such that the sub-matrices are much

more homogeneous.

an average of 1,479 distinct sender-receiver pairs (the num-
ber of edges) every week.

Like the NETWORK dataset, the graphs in ENRON are also cor-
related. GraphScope can reorganize the graph into homo-
geneous partitions (see the visual comparison in Figure 4).

(a) before (b) after

Figure 4: ENRON before and after GraphScope for the

graph segment of week 35, 2001 to week 38, 2001. Graph-

Scope can achieve significant compression by partitioning

senders and recipients into homogeneous groups

The CELLPHONE Dataset
The CELLPHONE dataset records the cellphone activity for
m=n=97 users from two different labs in MIT [1]. Each
graph snapshot corresponds to a week, from Jan 2004 to
May 2005. We thus have T=46 graphs, one for each week,
excluding weeks with no activity.

We plot the superimposed graphs of weeks 38 to 42 in
2004 at Figure 5(a), which looks much more random than
NETWORK and ENRON. However, GraphScope is still able to
extract the hidden structure from the graph as shown in
Figure 5(b), which looks much more homogeneous (more
details in Section 6.2).
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Figure 5: CELLPHONE before and after GraphScope, for

the period of week 38 to 42 in 2004

The DEVICE dataset
DEVICE dataset is constructed on the same 97 users whose
cellphones periodically scan for nearby phones and comput-
ers over Bluetooth. The goal is to understand people’s be-
havior from their proximity to others. Figure 6(a) plots
the superimposed user-to-user graphs for one time segment
where every dot indicates that the two corresponding users
are physically near each other. Note that the first row rep-
resents all the devices that do not belong to any of the 97
individual users (mainly laptop computers, PDAs and other
peoples’ cellphones). Figure 6(b) shows the resulting user
partitions for that time segment, where cluster structure is
revealed (see Section 6.2 for details).
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Figure 6: DEVICE before and after GraphScope for the

time segment between week 38, 2004 and week 42, 2004.

Interesting communities are identified

The Transaction Dataset
The TRANSACTION dataset has m=n=28 accounts of a com-
pany, over 2,200 days. An edge indicates that the source ac-
count had funds transfered to the destination account. Each
graph snapshot covers transaction activities over a window
of 40 days, resulting in T=51 time-ticks for our dataset.

Figure 7(a) shows the transaction graph for one times-
tamp. Every black square at the (i, j) entry in Figure 7(a)
indicates there is at least one transaction debiting the ith ac-
count and crediting the jth account. After applying Graph-
Scope on that timestamp (see Figure 7(b)), the accounts are
organized into very homogeneous groups with a few excep-
tions (more details in Section 6.2).
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Figure 7: TRANSACTION before and after GraphScope for a

time segment of 5 months. GraphScope is able to group

accounts into partitions based on their types. Darker

color indicates multiple edges over time.

6.2 Mining Case-studies
Now we qualitatively present the mining observation on

all the datasets. More specifically, we illustrate that (1)
source and destination groups correspond to semantically
meaningful clusters; (2) the groups evolve over time; (3)
time segments indicate interesting change-points.



Figure 8: NETWORK zoom-in (log-log plot): (a) Source

nodes are grouped into active hosts and security scan-

ning program; Destination nodes are grouped into ac-

tive hosts, clusters, web servers and mail servers. (b)

on a different time segment, a group of unusual scanners

appears, in addition to the earlier groups.

NETWORK: Interpretable groups
Despite the bursty nature of network traffic, GraphScope
can successfully cluster the source and destination hosts
into meaningful groups. Figure 8(a) and (b) show the ac-
tive source and destination nodes organized by groups for
two different time segments. Note that Figure 8 is in log-
log scale to visualize those small partitions. For example,
source nodes are grouped into (1) active hosts which talk to
a small number of hosts, (2) P2P hosts that scan a number
of hosts, and (3) administrative scanning hosts7 which scan
many hosts. Similarly, destination hosts are grouped into
(1) active hosts, (2) cluster servers at which many students
login remotely to work on different tasks, (3) web servers
which hosts the websites of different schools, and (4) mail
servers that have the most incoming connections. The main
difference between Figure 8(a) and (b) is that a source group
of unusual scanners emerges in the latter. GraphScope can
automatically identify the change and decide to split into
two time segments.

CELLPHONE: Evolving groups
As in NETWORK, we also observe meaningful groups in CELL-

PHONE. Figure 9 (a) illustrate the calling patterns in the fall
semester of 2004, where two strong user partitions (G1 and
G2) exist. The dense small partition G3 is the service call
in campus, which has a lot of incoming calls from everyone.
Figure 9 (b) illustrates that the calling patterns changed
during the winter break which follows the fall semester.

DEVICE: Evolving groups
The evolving group behavior is also observed in the DEVICE

dataset. In particular, two dense partitions appear in Fig-
ure 10(a): after inspecting the user ids and their attributes,
we found that the users in group U1 are all from the same
school with similar schedule, probably taking the same class;
the users in U2 all work in the same lab. In a later time seg-
ment (see Figure 10(b)), the partition U1 disappeared, while
the partition U2 is unchanged.

TRANSACTION

As shown in Figure 7(b), GraphScope successfully organizes
the 28 accounts into three partitions. Upon closer inspec-

7The campus network is constantly running some port-
scanning program to identify potential vulnerabilities of the
in-network hosts.
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Figure 9: CELLPHONE: a) Two calling groups appear dur-

ing the fall semester; b) Call groups changed in the win-

ter break. The change point corresponds to the winter

break.
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Figure 10: DEVICE: (a) two groups are prominent. Users

in U1 are all from the same school with similar schedule

possibly taking the same class; Users in U2 are all work-

ing in the same lab. (b) U1 disappears in the next time

segment, while U2 remains unchanged.

tion, these groups correspond to the different functional
groups of the accounts (e.g., ‘marketing’, ‘sales’)8. In Fig-
ure 7(b), the interaction between first source partition (from
the top) and second destination partition (from the left) cor-
respond to mainly the transactions from assets accounts to
liability and revenue accounts, which obeys common busi-
ness practice.

ENRON: Change-point detection
The source and destination partitions usually correspond to
meaningful clusters for the given time segment. Moreover,
the time segments themselves usually encode important in-
formation about changes. Figure 1 plots the encoding cost
difference between incorporating the new graph into the cur-
rent time segment vs. starting a new segment. The verti-
cal lines on Figure 1 are the top 10 splits with largest cost
savings when starting a new segment, which actually corre-
spond to the key events related to Enron Inc. Moreover, the
intensity in terms of magnitude and frequency dramatically
increases around Jan 2002 which coincides with several key
incidents such as the investigation on document shredding,
and the CEO resignation.

6.3 Quality and Scalability
We compare fresh-start and resume (see Section 5.3) in

terms of compression benefit, against the global compres-
sion estimate and the space requirement for the original
graphs, stored as sparse matrices (adjacency list represen-
tation). Figure 11 shows that both fresh-start and resume

8 Due to anonymity requirements, the account types are
obfuscated.



GraphScope achieve high compression gain (less than 4%
of the original space), which is even better than the global
compression on the graphs (the 3rd bar for each dataset).
Our two variations require about the same space.
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Figure 11: Relative Encoding Cost: Both resume and

fresh-start methods give over an order of magnitude space

saving compared to the raw data and are much better

than global compression on the raw data.

Now we illustrate the CPU cost (scalability) of fresh-start
and resume. As shown in Figure 12(a) for NETWORK (similar
result are achieved for the other datasets, hence omitted),
the CPU cost per timestamp/graph is stable over time for
both fresh-start and resume, which suggests that both pro-
posed methods are scalable to streaming environments.

Furthermore, resume is much faster than fresh-start as
shown in Figure 12(b), especially for large graphs such as in
NETWORK. There, resume only uses 10% of CPU time com-
pared to fresh-start.
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sume and fresh-start GraphScope are stable over time;

(b) resume GraphScope is much faster than fresh-start

GraphScope on the same datasets (the error bars give
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7. CONCLUSIONS
We propose GraphScope, a parameter-free scheme to mine

streams of graphs. Our method has all of the following de-
sired properties: 1) It is rigorous and automatic, with no
need for user-defined parameters. Instead, it uses the Mini-
mum Description Language (MDL) principle, to decide how
to form communities, and when to modify them. 2) It is fast
and scalable, carefully designed to work in a streaming set-
ting. 3) It is effective, discovering meaningful communities
and meaningful transition points.

We also present experiments on several real datasets, span-
ning 500 Gigabytes. The datasets were from widely di-
verse applications (university network traffic, email from the
Enron company, cellphone call logs and Bluetooth connec-
tions). Because of its generality and its information theo-
retic underpinnings, GraphScope is able to find meaningful
groups and patterns in all the above settings, without any
specific fine-tuning on our side.

Future research directions include extensions to create hi-
erarchical groupings, both of the communities as well as of
the time segments.
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