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ABSTRACT 
We focus on the problem of finding patterns across two large, 
multidimensional datasets. For example, given feature vec- 
tors of healthy and of non-healthy patients, we want to an- 
swer the following questions: Are the two clouds of points 
separable? What  is the smallest/laxgest pair-wise distance 
across the two datasets? Which of the two clouds does a 
new point (feature vector) come from? 

We propose a new tool, the tri-plot, and its generalization, 
the pq-plot, which help us answer the above questions. We 
provide a set of rules on how to interpret a tri-plot, and we 
apply these rules on synthetic and real datasets. We also 
show how to use our tool for classification, when traditional 
methods (nearest neighbor, classification trees) may fail. 

1. INTRODUCTION AND MOTIVATION 
The automatic discovery of meaningful patterns and rela- 

tionships hidden in vast repositories of raw information has 
become an issue of great importance. Multimedia systems 
for satellite images, medical data and banking information 
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are some examples of prolific data sources. Many of these 
data are inherently multi-dimensional. It is often difficult 
to summarize a large number of attributes by extracting a 
few essential features. Moreover, many methods proposed 
in the literature suffer from the dimensionality curse and 
are impractical to apply directly. Thus, dealing efficiently 
with high-dimensional data is a challenge for researchers in 
the database field [26, 5]. Things become worse when more 
than one datasets are involved. 

We propose a method for exploring the relationship be- 
tween two multidimensional datasets, by summarizing the 
information about their relative position. Our method re- 
quires only a single pass on the data and scales linearly with 
the number of dimensions. 

Problem definition. Given two large multidimensional data- 
sets, find rules about their relative placement in space: 

Q1 Do the datasets come from the same distribution? 

Q2 Do they repel each other? 

Q3 Are they close or far away? 

Q4 Are they separable? 

Q5 For a given, unlabelled point, which of the two sets does 
it come from (if any)? 

In the following section, we will briefly discuss the related 
work on data mining techniques and describe the datasets 
we used in our experiments. We then introduce the cross- 
cloud plots and explain their properties. Based on these, 
we present a set of practicM rules which allow us to analyze 
two clouds of points. Finally, we describe the algorithm for 
generating the plots. 

2. RELATED WORK 
There has been a tremendous amount of work on data 

mining during the past years. Many techniques have been 
developed that  have Mlowed the discovery of various trends, 
relations and characteristics with large amounts of data [16, 
6]. Detailed surveys can be found in [7] and [13]. Also, [11] 
contains an insightful discussion of the overall process of 
knowledge discovery in databases (KDD) as well as a com- 
prehensive overview of methods, problems, and their inher- 
ent characteristics. 

In the field of spatial data mining [9] much recent work 
has focused on clustering and the discovery of local trends 
and characterizations. Scalable Mgorithms for extracting 
clusters from large collections of spatial data are presented 
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in [19] and [18]. The authors also combine this with the 
extraction of characteristics based on non-spatial  a t t r ibutes  
by using both spatial  dominant and non-spatial  dominant 
approaches (depending on whether the cluster discovery is 
performed initially or on subsets derived using non- spa- 
tial at tr ibutes).  A general framework for discovering trends 
and characterizations among neighborhoods of data-points  
is presented in [8]. This framework is built on top of a spatial  
DBMS and utilizes neighborhood-relationship graphs which 
are traversed to perform a number of operations. Addition- 
ally, scalable clustering algorithms are included [1, 25, 24, 
12]. 

The work on fractals and box-counting plots is related: 
[3] used the correlation fractal dimension of a dataset  to es- 
t imate  the selectivity of nearest-neighbor queries; [10] gave 
formulas for the selectivity of spatial  joins across two point- 
sets. [4] analyze the performance of nearest-neighbor queries, 
eventually using the fractal dimension. More remote work 
on fractals includes [21], [15], [2]. Almost all of these pa- 
pers use fast, linear (or O ( N l o g N ) )  algorithms, based on 
the box-counting method. We also use a similar approach 
for our tri-plots. 

Visualization techniques for large amounts of multidimen- 
sional da ta  have also been developed. The work described 
in [17] presents a visualization method which utilizes views 
of the da ta  around reference points and effectively reduces 
the amount of information to be displayed in a way that  
affects various characteristics of the da ta  (eg. shape and 
location of clusters, etc.) in a controlled manner. 

There has also been significant work on da ta  mining in 
non-spatial, multidimensional databases. Recent work on a 
general framework that  incorporates a number of algorithms 
is presented in [14]. The authors introduce a general query 
language and demonstrate its application on the discovery 
of a large variety of association rules which satisfy the anti- 
monotonicity property. 

However, none of the above methods can answer all the 
questions, Q1 to Q5, which we posed in the previous section. 
The method proposed in this paper can answer such ques- 
tions. To find a solution for the given problem, we move 
away from association rules and focus on the spatial rela- 
tionships between two multidimensional datasets. 

2.1 Description of the data sets 
We applied our method on several datasets,  both synthetic 

and real. The former are used to build intuition, and the 
lat ter  to validate our techniques. The synthetic datasets are 
always normalized to a unit hypercube and they may be 
translated,  rotated and/or  scaled in the experiments. The 
datasets are described in table 1. 

3. PROPOSED METHOD: CROSS-CLOUD 
PLOTS 

Our approach relies on a novel method that  allows fast 
summarization of the distr ibution of distances between points 
from two sets A and B. Table 2 presents the symbols used 
in this paper. Consider a grid with cells of side r and let 
CA,, (Cs, i )  be the number of points from set A (B) in the 
i - th cell. The cell grid part i t ions the minimum bounding 
box of both datasets. The cross-function CrossfA,B(r,p , q) 
is defined as follows: 

DEFINITION 1. Given two data sets A and B in the same 

Symbol Definition 

NA (or N s )  No. of points in dataset  A (or B) 
Cross 

Self  A 
WA 

W s  

CrOSSA,B(r, 1, 1) plot between 
datasets  A and B 
SelfA(r , 1, 1) plot of dataset  A 
CrOSSA,B(r, 10, 1) cross-could plot 
weighted on dataset  A 
CrOSSA,B(r, 1, 10) cross-could plot 
weighted on dataset  B 

CA,, (CB,~) Count of type A (B) points in the i - th cell 
n No. of dimensions (embedding dimensionality) 
D2 Correlation fractal dimension 
~,un Est. minimum distance between two points 
~ma~ Est. maximum distance between two points 

T a b l e  2: S y m b o l s  a n d  d e f i n i t i o n s  

n-dimensional space, we define the cross-function of order 
(p, q) as 

C p Crossf A,.(r,p,q) = ~ A,," Cq B,i 

Typically, we plot the cross-function in log-log scales, after 
some normalization. The normalization factor scales the 
plot, maximizing the information presented: 

DEFINITION 2. Given two data sets A and B (with NA 
and NB points) in the same n-dimensional space, we define 
the cross-cloud plot as the plot of 

~ V ~ C P  Cq ~ l ° g ( N A ' N B l ' l ° g ~  A,i B,,)  CrossA,s(r,p,q) = log(N~ N q) 

versuslog(r) 

The cross-function has several desirable properties: 

PROPERTY 1. For p = q = 1, the cross-function is pro- 
portional to the count of A - B  pairs within distance r. That 
is, 

CrOSSA,B(r, 1, 1) OC ( ~  of pairs of points within distance < r)  

Proof. Using Schuster's lemma [23]. 
This is an important  property. For p = q = 1, the cross- 

cloud plot gives the cumulative distr ibution function of the 
pairwise distances between the two "clouds" A and B [10]. 
Because of its importance, we will use p = q = 1 as the de- 
fault values. We will also omit the subscripts A, B from the 
cross-cloud plot when it is clear which datasets  are involved. 
That  is, 

Cross(r) ~-- CrossA,B(r) ~-~ CrossA,B(r, 1, 1) 

PROPERTY 2. The cross-function includes the correlation 
integral as a special case when we apply it to the same dataset 
(i.e., A - B ) .  

Proof. From the definition of correlation integral [22]. 
The correlation integral gives the correlation fractal di- 

mension D2 of a dataset  A, if it  is self-similar. Since the 
above proper ty  is very important ,  we shall give the self cross- 
cloud plots a special name: 
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Dataset [ Description 
Synthetic datasets 

Line Points along a line segment, randomly chosen. 
Circumference Points along a circle, randomly chosen. 
Sierpinsky Randomly generated points from a Sierpinsky triangle (see fig. 7b). 
Square Points on a 2D manifold, randomly generated. 
Cube Points in a 3D manifold, randomly generated. 
Super-cluster 256 uniformly distributed clusters, each with 7x7 points in a 2D manifold. 

Real datasets 
California Four two-dimensional sets of points (obtained from UCI) that refer to geographical coordinates in 

California [20]. Each set corresponds to a feature: 'streets' (62,933 points), 'railways' (31,059 points), 
'political' borders (46,850 points), and natural 'water'  systems (72,066 points). 

Iris 

Galaxy 

Three sets describing properties of the flower species of genus Iris. The points are 4-dimensional 
(sepal length, sepal width, petal length, petal width); the species are 'virginica', 'versicolor' and 
'setosa' (50 points each). This is a well-known dataset in the machine learning literature. 
Datasets from the SLOAN telescope: (x, y) coordinates, plus the class label. There are 82,277 in the 
'dev' class (deVaucouleurs), and 70,405 in the 'exp' class (exponential). 

LC Customer data from a large corporation (confidential). There were 20,000 records (belonging to two 
classes with 1,716 and 18,284 members each), each with 19 numerical/boolean attributes. 

Votes Two 16-dimensional datasets from the 1984 United States Congressional Voting Records Database: 
'democrat '  (267 entries) and 'republican' (168 entries). 

Table 1: Descript ion of  datasets used for exposit ion and test ing of  our method.  

DEFINITION 3. The self-plot of a given dataset A is the 
plot of 

Self A(r) = l°g ( z '  CA'' " (cA'' - I) versus log(r) 

In order to avoid artifacts that  self-pairs generate, self-plots 
do not count self-pairs, by definition. Moreover, minor pairs 
((Pl,P2) and (P2,pl)) are counted only once. 

PROPERTY 3. If A is self similar, then the self-plot of A 
is linear and its slope is its intrinsic dimensionality (corre- 
lation fractal dimension, D2 ). 

Proof. See [3]. 
We are now ready to define our two main tools, the tri-plot 

and the pq-plot. 

DEFINITION 4. The tri-plot of two datasets, A and B, is 
the graph which contains the cross-plot Cross(r) and the nor- 
malized self-plots for each dataset (SelfA(r) q- log(NA/Ns) 
and Self B(r ) + log(YB/NA)). 

The normalization factors, log(NA/NB) and log(NB/NA), 
perform only translation, preserving the steepness of the 
graphs. In this paper, for every tri-plot we present the three 
graphs with the same color pattern: the cross-plot is pre- 
sented in blue lines with diamonds, SelfA in green lines with 
crosses and SelfB in red lines with squares. We also show 
the slope (or steepness) of the fitted lines. 

DEFINITION 5. The pq-plot of two datasets, A and B, 
is the graph of the three cross-cloud plots: CrOSSA,B(r), 
CrOSSA,B(r, 1, k), and CrossA,B(r, k, 1) for large values of 
k (k>>l). 

Fig. 1 shows the tri-plot and pq-plot for the Line and 
Sierpinsky datasets. Notice that, although the Cross() is 
almost always linear (fig. la), this is not necessarily true for 
the Cross(r, 1, k) and Cross(r, k, 1) (in fig. lb, k = 10). 

TrI-Plot: 8twr~nskyl 8K X klnel0K 

~(;an,) 

pq-Plo~ SlerplnlkylSK X Llnel0K 

. . . . . . . . . . .  k n g l ~ l )  " 

Figure 1: Sierpinsky and Line datasets: (a) the  tri- 
plot, (b) the pq-plot. The  cross-plots are presented 
in blue with diamonds,  the  self- and weighted- 
Sierpinsky plots in green with  crosses, and the  self- 
and weighted-Line in red with  squares. 

DEFINITION 6. The steepness of a plot is its slope, as de- 
termined by fitting a line with least-squares regression. 

The tri-plots allow us to determine the relationship between 
the two datasets. If they are self-similar (ie. both their self- 
plots are linear for a meaningful range of radii), their slopes 
can be used in the comparisons that  follow. However, the 
proposed analysis can be applied even to datasets which are 
not self-similar (ie. do not have linear self-plots). Thus, we 
will in use the terms steepness and similarity (as defined 
above). The pq-plot is used in a further analysis step. Its 
use is more subtle and is discussed in section 4.3. 

3.1 Anatomy of the proposed plots 
This section shows how to "read" the cross-cloud plots 

and take advantage of the tri- and pq-plots, without any 
extra calculations on the datasets. 

3.1.1 Properties o f  the self-plots 

PROPERTY 4. The first radius for which the count-of-pairs 
is not zero in the self-plot provides an accurate estimate, 
~,u,~, of the minimum distance between any two points. 
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F i g u r e  2: M e a s u r e m e n t s  o b t a i n e d  f rom self-plots:  
(a) Line,  a n d  (b) S u p e r - c l u s t e r  datase t s .  

2s Trl-plot: Slerplnsky(A) and L i n e ( B )  

o Cross stoepness=1.9854 o 
is "SelfAsteepness=1.6362 ~ -  - 

o .  so,,B=°o0 . . . . .  ,ooo  o 

,2 . ~ ~ , /  ~ Maximum 
/ , ~ /  ~ /  distance 

,o • ~ / + /  ~ -  between two 
. . .p_ .~"  . / ~  points of the 

s. I / S e l f _ P l ~  / / datasets 

2 . / ~ t a n c e  between points of 

"~og(radii) 

Figure  3: E x a m p l e  of  a t r i - p l o t  i n d i c a t i n g  w h e r e  
to  f ind m e a n i n g f u l  i n f o r m a t i o n .  T h e  c ross -p lo t  is 
a lways  in b l u e  w i t h  d i a m o n d s ,  SelfA in  g r een  w i t h  
crosses  a n d  Se l f s  in  r ed  w i t h  squares .  

PROPERTY 5. Similarly, the radius up to which the count- 
of-pair increases (being constant for larger radii) provides an 
accurate estimate, ~maz, of the maximum distance between 
any two points. We also refer to this distance as the dataset 
diameter. 

Fig. 2 illustrates the above properties. The lower row of 
fig. 2a shows a line with 15,000 points. Its self-plot is linear. 
The slope, which is D2, is equal to 1, as expected (since this 
is the intrinsic dimensionality of a line). The ~,m~ and ~mo~ 
estimates are also indicated. 

PROPERTY 6. If  the dataset consists of clusters, the self- 
plot has a plateau from radius ~,~in to ~mo~ (see fig. 2). 

Whenever the self-plot is piecewise linear, the dataset has 
characteristic scales. Plateaus are of particular interest; 
these occur when the dataset is not homogeneous. From 
the endpoints of the plateau, we can accurately estimate the 
maximum cluster diameter, ~cdmo=, and characteristic sepa- 
ration between clusters, ~s~vc. This occurs in the self-plot of 
the Super-cluster dataset (fig. 2b). 

3.1.2 Propert ies  o f  the cross-c loud p lo t  

Fig. 3 presents an example of a tri-plot, where dataset A 
is a randomly generated set of 6,000 points from a line (y = 
xO/x, y E [0, 1]), and dataset B is a Sierpinsky triangle with 
6,561 points. These two datasets where chosen to highlight 
some interesting plot properties. These are discussed in the 
following (see also fig. 3). 

PROPERTY 7. The minimum distance between the datasets 
can be accurately estimated as the smallest radius which has 
a non-zero value in the cross-cloud function. 

PROPERTY 8. Similarly, the maximum distance between 
the datasets (or, the maximum surrounding diameter) can 
be accurately estimated as the greatest radius before the plot 
turns fiat. 

PROPERTY 9. Whenever the cross-cloud plot has a flat 
part for very small radii, there are duplicate points across 
both datasets. 

All the previous estimates can be obtained with a single pro- 
cessing pass over both datasets to count grid occupancies, 
without explicitly computing any distances. 

PROPERTY 10. The steepness of the cross-cloud plot is 
always greater than or equal to that of the steepest self-plot. 

4. P R A C T I C A L  U S A G E  - C L O U D  M I N I N G  
Before presenting our main analysis process, we need to 

define some terms: 

DEFINITION 7. The shape of a dataset refers to its for- 
mation law (eg. "line," "square," "sierpinsky"). 

DEFINITION 8. Two datasets are collocated if they have 
(highly) overlapping minimum bounding boxes. 

DEFINITION 9. The placement of a dataset refers to its 
position and orientation. 

We use these three terms when comparing two datasets. 
Two datasets can have the same shape but different place- 
ment (eg. two non-collinear lines). Two datasets have the 
same shape but different placement, if the one can be ob- 
tained from the other through aflfine transformations. Also, 
two datasets with the same intrinsic dimensionality can have 
different shapes (eg. a line and a circle - both have D2 = 1). 

4.1 Rules  for tri-plot analysis  
In this section we present rules (see table 3 for a sum- 

mary) to analyze and classify the relationship between two 
datasets. From the tri-plots we can get information about 
the intrinsic structure and the global relationship between 
the datasets. 

Rule  1 (identical).  If both datasets are identical, then all 
plots of a tri-plot are similar (SelfA ~-, Se l l s  ~ Cross). In 
this case, the three graphs will be on top of each other. 
This means that the intrinsic dimensionality, shape as well 
as placement of both datasets are the same. This may be 
because one dataset is a subset of the other, or both are sam- 
ples from a bigger one. Fig. 4 shows the tri-plots for (a) two 
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I Rule I Situation Condition Example 
A and B are similar (SelfA and Selfs have same 
steepness), a n d  

1 Datasets  A and B are stat ist ically Cross, SelfA and SelfB have the same steepness Figure 4 
identical 

2 Both datasets  have the same intrinsic Cross has steepness comparable to tha t  of SelfA Figure 5 
dimensionality and SelfB 

3 The datasets  are disjoint Cross is much steeper than both SelfA and Sells Figure 6 

A and B are not similar (SelfA and SelfB have 
different steepness), a n d  

4 The (less steep) dataset  is a proper Cross and SelfA or SelfB have the same steepness Figure 7 
subset of the other 

5 The datasets  are collocated Cross has steepness comparable to tha t  of SelfA Figure 8 
and Self s 

3 Cross is much steeper than both The datasets  are disjoint Figure 6 
Self A and Sells 

T a b l e  3: C o n d i t i o n s  a n d  r u l e s  u s e d  in  t r i - p l o t  a n a l y s i s .  

LlneSK X Unel OK Steq~nlky1 OK X Sic r~mk'~K Sotuare4k X S~uatel0k T ~  i n l e ~ u n g  Cbcumferencea 

|}l ~ t]il~ I i ~ "  ~ ..... "*" . . . . .  "~'~'~'*" ..... l" ~ "  ~" . . . .  . .z  . ~ . . " ~ ~  

' . . . . . . .  : . . . . . . .  : 
. . . . . .  • ~ ,  . . . . . . . .  ~ . . . . . . . . . . . .  ~ - 

F i g u r e  4: R u l e  1 - T h e  two  d a t a s e t s  have  t h e  s a m e  
s h a p e  a n d  p l a c e m e n t :  (a)  T w o  s u p e r i m p o s e d  l ines  
(a l l  p l o t s  have  s l o p e  ~ 1, (b)  T w o  s u p e r i m p o s e d  
S i e r p i n s k y  t r i a n g l e s  (a l l  p l o t s  have  s l opes  ~ 1.64 
log 3 / log  2, (c) T w o  s u p e r i m p o s e d  s q u a r e s  (a l l  p l o t s  
have  s l o p e s  ~ 2. A l l  d a t a s e t s  a r e  in 2D space ,  a n d  
t h e  a x e s  o f  a l l  t r i - p l o t s  a r e  in log- log  scale .  

lines with different number of objects, (b) two Sierpinsky 
triangles, and (c) two coplanar squares in 3D. All datasets 
in fig. 4 are in a 2D manifold. In all these examples, both 
datasets  have the same shape and placement but different 
number of points. 

Rule 2 (same shape, differentplacement). If both datasets  
have the same intrinsic dimensionality, but  different place- 
ment, then their steepness is similar (SelfA ..~ Self B), but 
Cross is only moderately steeper than both. bSarther anal- 
ysis using the pq-plot can indicate whether the datasets  are 
separable or not and, if separable, to what extent. Examples 
are intersecting lines, intersecting planes, or two Sierpinsky 
datasets  with one rotated over the other (see fig. 5a, 5b and 
5c, respectively). 

Rule 3 (disjoint datasets), if  the datasets  are disjoint, 
then Cross is much steeper than both SelfA and Sells (does 
not mat ter  whether the lat ter  are similar or not). For two 
intersecting datasets,  the Cross steepness will not be so far 
from the steepness of their self-plots. However, if the Cross 
is much steeper than both SelfA and Sells , it means that  
the minimum distance between points from the datasets  is 
bigger than the average distance of the nearest neighbors 
of points in both data.sets, so the datasets  are disjoint. In 

(a) 

UneSK X CIr~mlSK 

(b) 

. mlum<A~ x .squa,,l, ~ 

it - J  / 

(c) 

F i g u r e  5: R u l e  2 - T h e  two  d a t a s e t s  have  t h e  s a m e  
i n t r i n s i c  d i m e n s i o n a l i t y ,  b u t  d i f f e r e n t  p l a c e m e n t s :  
(a) T w o  i n t e r s e c t i n g  c i r c u m f e r e n c e s  in  2D s p a c e ,  
(b)  A l ine  c r o s s i n g  a c i r c u m f e r e n c e  in  2D space ,  (c) 
T w o  p i e r c i n g  p l a n e s  in  3D s p a c e .  T h e  u p p e r  r o w  
shows  t h e  t r i - p l o t s  w i t h  t h e  a x e s  in  l og - log  scale .  
T h e  lower  r o w  s h o w s  t h e  c o r r e s p o n d i n g  d a t a s e t s  in  
t h e i r  r e s p e c t i v e  spa c e s .  

fact, this case leads to the conclusion tha t  both  datasets  
are well-defined clusters, hence they should be separable by 
tradit ional  clustering techniques. Examples of this si tuation 
are non-intersecting lines, squares far apart ,  or a Sierpinsky 
triangle and a plane which is not coplanar with the Sierpin- 
sky's support ing plane (see fig. 6a to 6c). All datasets  are 
in 3D space. Notice tha t  the self-plots have the expected 
slopes, but  the cross-plots have very high steepness (18, 13 
and 26 respectively). 

Rule4(sub-manifold). Without  loss of generality, let Self A 
be the steepest of SelfA and Sells. If dataset  B is a sub- 
manifold of dataset  A, the self-plots do not have similar 
steepness (Self A ~ Self B ) and the Cross is equal t o  Self A. 
Remember that  the steepness of the Cross cannot be smMler 
than the steepness of SelfA or SelfB. Therefore, if the steep- 
ness of the Cross is similar to one of the self steepnesses (eg. 
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F i g u r e  6: R u l e  3 - T h e  two  d a t a s e t s  a r e  d i s j o in t :  (a) 
two  n o n - i n t e r s e c t i n g  l ines ,  (b)  two  n o n - i n t e r s e c t i n g  
squares ,  (c) a s q u a r e  a n d  a S i e r p i n s k y  t r i a n g l e .  T h e  
u p p e r  r o w  shows  t h e  t r i - p l o t s  w i t h  t h e  axes  in  log-  
log  scale .  T h e  lower  row shows  t h e  c o r r e s p o n d i n g  
d a t a s e t s  in  3D space .  

Cross ~ SdfA),  then the other graph (in this case BegfB ) 
will be less steep than Cross. This means that  the points 
in dataset  B have a stronger correlation than the points 
in dataset  A. Rule 1 deals with the situation where both 
datasets are subsets of a larger one, or one is a subset of 
another, but  there is no rule to extract  the subsets. Rule 4 
deals with the same case of occurrence of subsets, but here 
there are rules to choose points that  pertain to the dataset  
with a smoother self-plot. Examples of this case are a line 
embedded in a plane, a Sierpinsky dataset  and its support-  
ing plane, and a square embedded in a volume (see fig. 7a, 
7b and 7c, respectively). 

Rule 5 (collocated). If both datasets  have different shape, 
placement and intrinsic dimensionality, then ~elfA ~ Se[fB 
and the Cross is only moderately steeper than ~elfA and 
SelfB. In this case, the datasets are not related to each 
other. They are, however, collocated, or at  least intersect- 
ing. This means that  although part  of the datasets may be 
separable, this would not be true for the entire dataset,  or 
for both datasets. Whenever this situation occurs, it should 
be further analyzed, for example, using the pq-plot. These 
are the cases of a line with a Sierpinsky triangle, a line pierc- 
ing a square, and a Sierpinsky intersecting a square, as fig. 8 
shows. 

4.2 Application to real datasets 
In the previous section we described the rules, using syn- 

thetic datasets  to build intuition. Here we apply them to 
real datasets  (see fig. 9). 

Rule 1 (identical). There are four pairs of datasets which 
conform this rule: two different subsets of California-political 
(fig. 9a), the two galaxy datasets  (for log r E [ -4 ,  4] - fig. 9b), 
Iris-versicolor and Iris-virginica (fig. 9c), and two different 
subsets of California-water (fig. 9d). 

Rule 3 (disjoint datasets). The Iris-Versicolor and Iris- 
Setosa pair  (fig. 9e), and the Democrat  and Republican 
pair  (fig. 9f) conform to this rule. Their cross-plot is much 

F i g u r e  7: R u l e  4 - O n e  d a t a s e t  is a p r o p e r  s u b s e t  
of  t h e  o t h e r  d a t a s e t :  (a)  a s q u a r e  o v e r l a p p i n g  a l ine  
in 2D s p a c e ,  (b)  a S i e r p i n s k y  t r i a n g l e  a n d  i t s  sup-  
p o r t i n g  p l a n e  in 2D space ,  (c) a v o l u m e  t r a v e s e d  
b y  a p l a n e  in 3D space .  T h e  u p p e r  row shows  t h e  
t r i - p l o t s  in  log - log  sca le .  T h e  lower  r o w  shows  t h e  
d a t a s e t s  in  t h e i r  r e s p e c t i v e  spaces .  

steeper than their self-plots. Versicolor and Setosa species 
are indeed apart .  Also, the Democrat  and Republican par- 
ties have distinct behavior, which allows separation of their 
members. Thus, we conclude tha t  these dataset  pairs can 
be separated and we can est imate the minimum distance 
between them (see proper ty  7). 

Rule 4 (sub-manifold). Fig. 9g shows the tri-plot of Cali- 
fornia-water and California-political. Recall that  the dataset  
with smaller steepness is probably a proper sub-manifold 
of the one with larger steepness (or of the superset from 
which both are samples). We thus conclude that  California- 
political is a subset of California-water. This makes sense, 
since many political divisions are along water paths. 

Rule 5 (collocated). According to fig. 9h, California-rail- 
road and California-political agree with Rule 5. This is 
reasonable, since railroads are built with objectives irrel- 
evant to political divisions. Also, the LC datasets  agree 
with Rule 5 and require further analysis. The flat parts in 
fig. 9i and in the political self-plot (fig. 9h) indicate that  
these datasets  possibly have duplicate (or near-duplicate) 
points. The Galaxy datasets  (fig. 9bb) demonstrate the case 
of clusters, which are present at two characteristic distances. 
Also, the datasets  repel each other for radii close to the clus- 
ter diameter. After analyzing the relationship between two 
datasets  using tri-plots, more information can be obtained 
from the pq-plots. 

4.3 Analysis of the pq-plot 
The pq-plot allows us to further examine the relation- 

ship between two datasets,  by weighting one dataset  when 
comparing its distance distr ibution with that  of the other 
dataset.  The analysis of the pq-plots is directed to specific 
ranges of the cross-cloud plots, in contrast  to the more global 
analysis of the tri-plots. 

Even if a CrossA,s(r,p,q) plot with p -~ 1 -~ q happens 
to be a line, its slope has no meaning; only its overall shape 
has useful properties. Also, due to the normalization by 
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F i g u r e  9: T r i -p lo t s  of  rea l  d a t a s e t s  a n d  t h e i r  c lass i f ica t ion  as o b t a i n e d  f r o m  ru les  1-5. 

log(NA • NB)/log(N~ • N~), both the leftmost and right;- 
most points in all pq-plots coincide. According to equa- 
tion 1, if a particular CA,~ (or CB,~) in the calculation of 
CrossA,s(r,p,q) is zero for a given radius r in a given re- 
gion of the space, the corresponding CB,~ (or CA,S) will not 
contribute to the total for this particular radius. The result 
will be a flat region in this part of the curve. Otherwise, if 
there is a regular distribution of distances over a continuous 
part of the curve, the resulting curve will exhibit a linear 
shape. Sudden rises in a plot indicate a large growth of 
counts starting at that radius. Hence, the two shapes in the 
curves of the cross-cloud plots that are worth looking for 
are: the linear parts, and the regions where the curves are 
flat. 

The cross-cloud plots, CrOSSA,B(r, k, 1), and CrOSSA,B(r, 1, k) 
with k >> 1 (which we have named WA and WB because 
they are 'weighted'), can be generated for any value of k. 
However, increasing k only increases the distortions on the 
plot, without giving any extra information. Thus, we picked 
k = 10. Each conclusion is valid for the range of radii which 
presents specific behavior. Next, we discuss two represen- 
tative situations, using pairs of synthetic datasets and com- 
paring the obtained tri-plots and pq-plots. 

Fig. 10 compares two pairs of datasets: circumference- 
circumference and line-circumference. This illustrates the 
situation stated by Rule 2: the two datasets are similar 

(SeYA ..~ SelfB and Cross steepness is less or equal than the 
steepness of SelfA plus the steepness of SelfB ). By looking 
only at the tri-plots in fig. 10a and 10d, it is not possible to 
say anything else about the datasets. However, in fig. 10b 
the three graphs are on top of each other. This means 
that both datasets have the same behavior under weighted 
calculation (Cross(r, 1, 10) and Cross(r, 10, 1)). Thus, both 
datasets have the same shape. On the other hand, the be- 
havior of the pq-plot in fig. 10e shows that  the datasets have 
different shapes, as well as how they are correlated within 
specific radii ranges (Region I and II on the plots). 

In this section we proposed the rules to analyze the tri- 
plots and the pq-plots using easily understandable synthetic 
datasets in 2D and 3D spaces. However, the same conclu- 
sions should apply for real datasets in any multi-dimensional 
space. In fact, for real datasets it is usually difficult to know 
how to describe the relationship between the attributes and 
to know if they are correlated. Nonetheless, our proposed 
analysis can indicate not only the existence of correlations~ 
but  also how "tight" they are. This analysis can also pro- 
vide evidence of how separable the datasets are, as well as 
if it is possible to classify points as belonging to one or to 
the other dataset. 

4.4 Using pq-plots to analyze datasets 
Due to space limitations, we present pq-plots only for some 
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F i g u r e  10: pq -p lo t s  for  t w o  p a i r s  o f  d a t a s e t s :  (a)  t h e  
t r i - p l o t  o f  t w o  i n t e r s e c t i n g  c i r c u m f e r e n c e s  (as  s h o w n  
in (c ) ) ,  (b)  t h e  pq -p lo t  o f  t h e  t w o  c i r c u m f e r e n c e s ,  (d)  
t h e  t r i - p l o t  o f  a l i n e  i n t e r s e c t i n g  a c i r c u m f e r e n c e  (as  
s h o w n  in  ( f ) ) ,  a n d  (e )  t h e  pq-p lo t  o f  t h e  l ine  a n d  t h e  
c i r c u m f e r e n c e .  

of the real datasets(fig. 11). Fig. l l a  shows the pq-plot for 
the Galaxy datasets. For the highlighted range, there is a 
distinct separation between the datasets. Besides confirm- 
ing that  the two galaxy types indeed repel each other, the 
pq-plots show that  there are few clusters consisting only of 
'exp'  galaxies (although there are clusters including points of 
both datasets also only with 'dev'  points). Outside the high- 
lighted range, the sets are almost identical. As expected, 
fig. l l b  confirms that  the Democrat  and Republican datasets 
are separable, since the weighted plots have completely op- 
posite behaviors. 

Fig. 11c shows the pq-plot of the California-water and 
California-political datasets. In this plot, there are four 
ranges with distinct behaviors. Range I corresponds to very 
small distances, so these distances are probably less than 
the resolution of the measurements; therefore they are not 
meaningful. Ranges II and III  are where the real distances 
are meaningful. The sudden fall to the left of the wWater- 
plot in range II means tha t  there are very few points in the 
political dataset  at  distances below this range from points 
in the water dataset.  This indicates a kind of "repulsion" 
of points from both datasets  for these small distances. In 
range III, both datasets  have approximately the same be- 
havior. Range IV is almost flat for all plots, meaning that  
there are almost no more pairs within this distance range. 
In fact, the "almost flat" part  of the graph is due to a few 
outliers in the dataset .  

4.5 Membership testing and classification 
So far we have shown how to use the tri-plots to answer 

questions Q1-Q5. In this section we illustrate the power of 
cross-cloud plots in another setting: membership testing and 
classification (Q5). Fig. 12 illustrates the following situation: 
We have two datasets,  A (20 points along a line) and B (900 
points in a ' t ight '  square). A new point (indicated by '? ') 
arrives. Which set, if any, does it belong to? 

Visually, the new point ( '? ')  should belong to the Line20 
set. However, nearest neighbors or decision-tree classifiers 
would put  it into the square: the new point has ,,~ 900 

. . . . .  • - [ [  . . . . . . . .  ' l 

F i g u r e  11: pq -p lo t s  for  r e a l  d a t a s e t s :  (a) G a l a x y ,  (b)  
D e m o c r a t  a n d  R e p u b l i c a n ,  (c) C a l i f o r n i a - w a t e r  a n d  
C a l i f o r n i a - p o l i t i c a l .  T h e  u p p e r  r o w  s h o w s  t h e  tr i -  
p l o t s  a n d  t h e  l ower  r o w  t h e  c o r r e s p o n d i n g  pq-plo ts .  
T h e  axes  a r e  in  log - log  sca les .  

'Square'  neighbors, before even the first 'Line20' neighbor 
comes along! 

We propose a method tha t  exploits cross-cloud plots to 
correctly classify the new point ( '? ') .  The new point is 
t reated as a singleton dataset  and its cross-plots are com- 
paved to the self-plots of each candidate set. In this partic- 
ular case, we compare the steepness of CrossLine,Point and 
C?~o8Ssquare,Point t o  the steepness of S e l f L i n  e and Selfsquar e 
and classify the new point accordingly. Notice that  the plots 
in fig. 12b are more similar to each other (almost equal steep- 
ness), while the plots in fig. 12c are clearly not similav. Thus, 
we conclude that  the new point ( '? ')  belongs to the Line20 
dataset,  despite what  k-neavset neighbor classification would 
say! 

The full details of the classification method are the topic 
of ongoing research. This is yet another application of the 
cross-cloud technique. 
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F i g u r e  12: C l a s s i f y i n g  a point as e i t h e r  b e l o n g i n g  t o  
a s p a r s e  l ine  o r  t o  a d e n s e  s q u a r e ,  u s i n g  t h e  c ross -  
c l o u d  m e t h o d :  (a)  s p a t i a l  p l a c e m e n t  o f  t h e  i n c o m i n g  
point and t h e  d a t a s e t s ,  (b)  S e l f L i n  e a n d  CroSSLine,Point 
p l o t ,  (c) Sells q . . . .  a n d  Crosssq . . . . .  Point  p lo t .  
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F i g u r e  13: Lef t  - W a l l - c l o c k  t i m e  ( in  s e c o n d s )  
n e e d e d  t o  g e n e r a t e  t h e  t r i - p l o t s  for  v a r y i n g l y  s i zed  
d a t a s e t s .  T h e  b l u e  g r a p h  r e p r e s e n t s  t h e  t i m e  for  
2D d a t a s e t s ,  t h e  g r e e n  g r a p h  for  8D d a t a s e t s  a n d  t h e  
r e d  g r a p h  for  16D d a t a s e t s .  R i g h t  - W a l l - c l o c k  t i m e  
(in s e c o n d s )  n e e d e d  t o  g e n e r a t e  t h e  T r i - p l o t s  v e r s u s  
t h e  d i m e n s i o n a l i t y  o f  t h e  d a t a s e t s ,  for  t h r e e  d i f fer -  
e n t  dataset  sizes (100,000,  200,000 a n d  300,000) .  

5. IMPLEMENTATION 
To obtain the required tri-plots, we use the single-pass 

algorithm presented in appendix A. This is based on box- 
counting and is an extension of [3, 10]. 

Wha t  is important  is tha t  this algorithm scales up for 
arbitrari ly large datasets,  and arbitrari ly high dimensions. 
This is rarely true for other spatial  da ta  mining methods in 
the literature. The algorithm to generate the pq-plots is very 
similar to the algorithm in appendix A, except we construct 
WA and W s  (instead of SelfA and SelfB ) plots. 

5.1 Scalability 
The algorithm is linear on the total  number of points, ie. 

O(NA + N s ) .  If we want I points in each cross-cloud plot (ie. 
number of grid sizes), then the complexity of our algorithm 
is O((NB + NA) • 1 • n), where n is the embedding dimen- 
sionality. Fig. 13 shows the wall-clock time required to pro- 
cess datasets  on a Pent ium II machine running NT4.0. The 
datasets  on the left graph have varying numbers of points 
in 2, 8 and 16-dimensional spaces, and we used 20 grids 
for each dataset .  For the right graph, we used datasets  with 
100,000, 200,000 and 300,000 points and dimensions 2 to 40. 
The execution time is indeed linear on the total  number of 
points, as well as on the dimensionality of the datasets.  The 
algorithm does not suffer from the dimensionality curse. 

Notice that  steps I and 2 of the algorithm read the datasets  
and maintain counts of each non-empty grid ceil. These 
counts can be kept in any da ta  structure (hash tables, quad- 
trees, etc). 

6. CONCLUSIONS 
We have proposed the cross-cloud plot, a new tool for 

spatial  da ta  mining across two n-dimensional datasets. We 
have shown that  our tool has all the necessary properties: 

• I t  can spot whether two clouds are disjoint (separable), 
s tat ist ically identical, repelling, or in-between. That  
is, it can answer questions Q1 to Q4 from section 1. 

• It can be used for classification and is capable of "learn- 
ing" a shape/cloud,  where t radi t ional  classifiers fail to 
do so (ie. it can answer question Q5). 

• I t  is very fast and scalable: We use a box-counting al- 
gorithm, which requires a single pass over each dataset ,  
and the memory requirement is proport ional  to the 
number F of non-empty grid cells and to the number l 
of grid sizes requested (1 < F < NA + NB, and clearly 
not exploding exponentially).  

• Tri-plots can be applied to high-dimensional datasets  
easily, because the algorithms scale linearly with the 
number of dimensions. 

The experiments on real datasets  show that  our tool finds 
pat terns  tha t  no other known method can. We believe that  
our cross-cloud plot is a powerful tool for spatial  da ta  mining 
and that  we have jus t  seen only the beginning of its potential  
uses. 
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APPENDIX 

A. ALGORITHM 
Given two datasets A and B (with cardinalities NA and 

NB) in a n-dimensional space, we generate the tri-plot (ie. 
CrOSSA,B, Self A and Self B plots): 

1 - For each point p of datasets A and B: 
For each grid size r = 1/2 j, j = 1 ,2 , . . .  ,l: 

Decide which grid cell it falls in (say, the i-th cell) 
Increment the count CA.I or CB#, accordingly 

2 - Compute the sum of product occupancies: 
SelfA(r ) = log (~ X~{ CA,{. (CA# -- 1)) , 
S e l f . ( r )  log E, ( c . , ,  - 1 ) ) ,  
CrossA,, (r) ---- log ( E ,  CA#" C,#)  

3 - Print the tri-plot: 
F o r r :  1/2J, j = 1 ,2 , . . .  ,l: 

Print CrOSSA,B (r) 
Print Self A normalized: Self A(r ) + log(NB/NA) 
Print Sells normalized: Self s(r  ) + log(NA/Ns) 

The number F of non-empty cells in each grid does not 
depend on the dimensionality n. In fact, 1 < F < NA -b NB. 
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