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ABSTRACT
It is commonly assumed that high-dimensional datasets con-
tain points most of which are located in low-dimensional
manifolds. Detection of low-dimensional clusters is an ex-
tremely useful task for performing operations such as clus-
tering and classification, however, it is a challenging com-
putational problem. In this paper we study the problem of
finding subsets of points with low intrinsic dimensionality.
Our main contribution is to extend the definition of frac-
tal correlation dimension, which measures average volume
growth rate, in order to estimate the intrinsic dimensional-
ity of the data in local neighborhoods. We provide a careful
analysis of several key examples in order to demonstrate the
properties of our measure. Based on our proposed measure,
we introduce a novel approach to discover clusters with low
dimensionality. The resulting algorithms extend previous
density based measures, which have been successfully used
for clustering. We demonstrate the effectiveness of our al-
gorithms for discovering low-dimensional m-flats embedded
in high dimensional spaces, and for detecting low-rank sub-
matrices.
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1. INTRODUCTION
Real datasets exhibit patterns and regularities. As a main

consequence, points typically lie on low-dimensional mani-
folds, rather than being evenly spread out. Detecting sub-
sets of points with low intrinsic dimensionality is useful in
tasks such as indexing and classification. It has recently
been proved [18] that the well-known “curse of dimensional-
ity” translates essentially to a “curse of intrinsic dimensional-
ity,” in terms of finding efficient approximations to nearest-
neighbor queries. Furthermore, separating points based on
some notion of “local dimensionality” is helpful in identifying
subsets of points that are qualitatively different. For exam-
ple assuming a geographical setting, locations along a river
belong to a 1-D manifold, whereas locations on a lake would
belong to a 2-D manifold (for example Figure 1). Similarly,
road intersections along a highway are on a 1-D manifold,
while intersections within a city belong to a 2-D manifold.
Thus, discovering low-dimensional manifolds is also useful
in its own right.

However, we are faced with three main challenges. The
first question that naturally arises is what “dimension” ex-
actly means. Data patterns may be fairly complicated. As-
suming that points follow linear trends and always lie on
hyper-planes is fairly restrictive; in fact, they typically fol-
low complex shapes, with limited extents. For example, in
a more abstract setting the lake and river may lie on the
same 2-D plane, but they still differ in dimension. Second,
to complicate matters even further, the observations may
not even belong to a vector space. Yet, we should be still
able to define the dimension of a subspace. Finally, in prac-
tical applications, the dimension of the embedding space is
large, in the order of thousands. Any method of practical in-
terest should be able to deal with spaces of arbitrarily high
dimension and still successfully find low-dimensional sub-
sets embedded in the original space. It is thus desirable to
characterize manifolds of complex shape embedded in any
space of high dimension, and devise algorithms for identify-
ing them. As we shall see, it is possible to intuitively define
a topological notion of dimension, which does not depend
on the notion of a linear subspace. Furthermore, our al-
gorithms for identifying low-dimensional manifolds are not
sensitive to the dimension of the original space and, thus,
do not suffer from the “curse of dimensionality”.

In order to argue about and detect the existence of a low-
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Figure 1: A dataset that contains two subsets of
different intrinsic dimensionality

dimensional manifold in our data, there must exist a suffi-
ciently large number of points that are densely packed on
this manifold. Therefore, it seems reasonable, that using
density based methods would be able to detect such sub-
spaces. However, we argue that density alone is not suffi-
cient. For the sake of example consider city locations inter-
spersed among highway intersections. The cities, lying on
a 2-D surface, form the first cluster. The road intersections
form the second cluster, as a complex network of denser 1-
D lines which occupies the same space as the city manifold
cluster. Density-based clustering approaches have a limited
ability to detect clusters-within-clusters. In this simple ex-
ample, they would typically produce either a large number
of separate city clusters (one for each group of cities enclosed
by roads), or one single cluster containing both intersections
and cities, depending on the density thresholds.

Consider also the example in Figure 1. In this case we
have three qualitatively different types of points. The set
of points that lie on the curved 1-D line, the set of points
that lie on the 2-D cloud, and the noise points that are scat-
tered in the 2-D plane. If the line and the square have the
same density, using a density based method is not possible
to detect all three of these subsets. Any density threshold
will just separate the noise points from the rest. Note also
that dimensionality by itself would not be able to separate
the square from the noise points, since the noise points are
also 2-dimensional. The synergy of density and intrinsic di-
mensionality gives a clear separation of the three distinct
datasets, as it is shown in the figure.

In this paper we propose the idea of creating a local-
growth model for each point. This growth model depends, in
principle, only on pairwise point distances and captures how
each point “views” its local neighborhood. Using this model
we can characterize each point xi with two variables (di, ci),
where di is the local dimensionality of the point xi, and ci is
the local density. Intuitively, di depends on the growth rate
of the number of points in the neighborhood of xi, while ci

depends on the density of points in the neighborhood of xi.
Both variables are estimated from local growth curves. Lo-

cal growth curves can be computed directly from the data.
Our algorithms require only a limited number of nearest-
neighbor (NN) queries. These are well-studied and several
efficient algorithms exist to answer them. For each point xi,
the local growthcurve of xi is computed, and a line is fitted
on a subset of the points of the curve that corresponds to a
local neighborhood of xi. Then, the local dimensionality di

is defined as the slope of the fitted line, while the local den-
sity ci is defined as the value of the fitted line for a specific

radius r∗. We choose r∗ so as to maximize the information
captured by the set of feature pairs (di, ci), in the sense of
minimizing the correlation between di and ci.

Using the local density and local dimensionality, each point
xi is represented by the feature pair (di, ci). Therefore, we
map our dataset in a two dimensional space. This has the
following advantages. First, we can easily cluster the dataset
using an off-the-shelf, two-dimensional clustering algorithm,
like EM. Second, in a user interactive system, the number of
clusters and the correct partition can be identified through
visual inspection.

Our main contributions are the following:

• Drawing upon ideas from fractals, we propose a general
way to characterize the local dimensionality of points.
Our definitions are topological and independent of the
notion of a linear subspace. Our methods can be ap-
plied to datasets of arbitrary dimensionality and our
algorithms are independent of the number of dimen-
sions in the original dataset.

• Our method maps the dataset into a 2-dimensional
space. We show how to chose the feature pairs (di, ci),
so as to maximize the information they retain about
the dataset, and enhance the visual representation of
the dataset.

• We demonstrate how local dimensionality and local
density can be used to detect low dimensional m-flats
and low-rank sub-matrices. Our algorithms can suc-
cessfully detect low-dimensional manifolds embedded
in high-dimensional spaces, even when they are spa-
tially overlapping

Additionally, our method does not assume that the points
lie in a vector space and can be also applied to metric data,
when dimensionality is not directly obtainable from the data
representation itself.

The rest of the paper is organized as follows. Section 2
discusses briefly the related work. Section 3 introduces the
key concepts while Section 4 explains their properties and
elaborates on effectively selecting feature pairs (di, ci). Sec-
tion 5 presents our algorithms and section 6 applies them
to the problems of detecting low-dimensional m-flats and
low-rank sub-matrices. Finally, we conclude in section 7.

2. RELATED WORK
In this section we briefly discuss related work, broadly

divided in two categories: methods that use some notion of
density, and methods based on intrinsic dimensionality.

Density-based clustering: Similar to our method, density-
based clustering approaches also rely on local density infor-
mation in order to partition the dataset.

Hierarchical single linkage is a well-known method to find
clusters with respect to density. To overcome problems in
cases, when clusters are connected by small chains, popular
variants like DBSCAN [11] and OPTICS [5] use a modified
linkage hierarchy, where points within a cluster have to be
reachable via core points (points having a certain minimum
number of neighbors). DBSCAN computes a clustering cor-
responding to a cut in the linkage hierarchy, while OPTICS
finds an ordering of the points from which a lower part of the
linkage hierarchy can be deduced. Both algorithms fall short
in case of clusters within clusters and the true hierarchy con-
tains nodes with degree one. However, as our approach does



not rely on spatial separation of the clusters, but focuses on
detecting subsets with low intrinsic dimensionality, it can
also deal with those cases.

Another density-based clustering method is DenClue [16],
which employs kernel density estimation and uses density
thresholds to define the clusters to be found. CLIQUE [4] is
a density-based method that can also detect subspaces such
that high-density clusters exist in them. However, it is grid-
based and thus assumes that points lie in vector space. Fur-
thermore, CLIQUE considers only hyper-rectangular clus-
ters and projections parallel to the axes.

Projective clustering: In this line of work, one tries to
find dense clusters in a projection of the original data space.
Proclus [2] and DOC [21] search the space of axes-parallel
projections to find good clusterings of the data. More ad-
vanced techniques like Orclus [3] and projective k-means [1]
analyze eigenvalues of subsets of the data and can find ar-
bitrary linear projections, in which points are clustered.

Fractals-related work: Concepts of intrinsic dimension-
ality from fractals have been successfully used in the data-
base field for numerous problems, such as nearest-neighbor
queries [19] and spatial query selectivity estimation [8, 12].
Recent results [18] discuss doubling dimension as measure
for intrinsic dimensionality. The proposed algorithm works
efficiently, when the intrinsic dimensionality is bounded.

Barbará et al. [7] propose a clustering approach that uses
the fractal dimension (box-counting). It computes the frac-
tal dimension of each individual cluster X and of X \ xi

and puts xi into the cluster for which the change is mini-
mal. This requires some initial seed clusters, which may be
difficult to guess.

Finally, LOCI [20] is an outlier detection method based on
the local distribution of pairwise distances at multiple scales.
Although the key concepts are related, LOCI focuses on an
entirely different application and does not use the concept
of intrinsic dimensionality in any way.

3. OVERVIEW OF THE APPROACH
In this section we give an overview of our method. As

we discussed before, the method draws upon and extends
previous density-based algorithms, as well as concepts of
intrinsic dimensionality. The two key measures it uses are
local density and local dimensionality. Both are obtained by
fitting a line on a subset of points of the local growth curve.

First, we review basic facts about the notion of intrinsic
dimensionality. Then, we describe local growth curves, and
we explain how local density and local dimensionality are
computed, and how they are used for clustering the dataset.

3.1 Background on intrinsic dimensionality
As an underlying basis of our method, we use the notion

of correlation dimension, which is a measure of the intrinsic
dimensionality of a dataset. In the following discussion, we
assume that the dataset X is a subset of R

m, and for defin-
ition purposes we assume that the number of points n in X
approaches the infinity. Let d : X × X → R be a distance
function between pairs of points of X, and let C(r) be the
average fraction of pairs of points within distance r, that is,

C(r) = lim
n→∞

1

n2

X
x∈X

|B(x, r)|,

where B(x, r) = {y | y ∈ X, d(x, y) ≤ r} is the subset of
points contained in a ball of radius r, centered at point x.
The correlation dimension is then defined as

dcorr = lim
r,r′→0

log[C(r)/C(r′)]

log[r/r′]
. (1)

We assume that all the limits exist. Alternative definitions
of intrinsic dimensionality can be found in the literature,
such as capacity or box counting dimension and information
dimension. Intrinsic dimensionality measures are sometimes
also collectively referred to as fractal dimension. The inter-
ested reader can find a comprehensive development of the
topic in a standard textbook, e.g., Rasband [22].

In practice, we deal with finite sets, so the definition of
correlation dimension in Equation (1) is not applicable. In
this case, we define the function C(r) as

C(r) =
1

n2

X
x∈X

|B(x, r)|, (2)

and estimate the correlation dimension by the slope of the
function C(r) in the log-log scale. The reason is that, since
log[C(r)/C(r′)]

log[r/r′]
= log[C(r)]−log[C(r′)]

log r−log r′ , the correlation dimension

expresses the increase rate of log[C(r)] between log r and
log r′.

The intuition is shown in Figure 2: For points that are
arranged on a line, as shown in Figure 2(a), one expects to
find twice the number of points when doubling the radius.
On the other hand, for points that are scattered on the 2-D
plane, as shown in Figure 2(c), when doubling the radius,
we expect the number of points to increase quadratically.
The growth rates of the number of points in Figures 2(a)
and 2(c) can then be estimated from the slope of the C(r)
curve in log-log scale, as shown in Figures 2(b) and 2(d),
respectively. These are close to one and two, respectively.
To enable visual comparison, the scales of the Figures 2(b)
and Figures 2(d) are the same.

3.2 Local Correlation Dimension
The function C(r) as defined in Equation (2) computes

the average fraction of neighbours of a point within dis-
tance r, where the average is taken over all points of the
dataset. However, due to averaging, if the dataset is non-
homogeneous, the estimated correlation dimension will not
reflect the “true” dimensionality of the data. Figure 3 il-
lustrates this point. Figure 3(a) shows a dataset with two
distinct subsets of points: in the first subset the points lie
on a 1-D curve, while the second subset consists of a cloud
of 2-D points. As a consequence of taking averages, the in-
trinsic dimension of the whole dataset is somewhere between
one and two. Figure 3(b) shows the line fitted to the C(r)
curve and, for comparison, lines with slopes one and two.

Therefore, in the case that a dataset consists of subsets
with different intrinsic dimensionality, the correlation di-
mension of a dataset does not correctly characterize the di-
mensionality of the dataset. To overcome this problem we
extend the definition of correlation dimension for each point
in the dataset.

Definition 1 (Local-Growth Curve). For each point
x, we define the local-growth curve, to be the function of r,
Gx : R → N that computes the fraction of neighbors of x in



log r

lo
g 

C
(r

)

log−log neighbor count for 1−D data

log r

lo
g 

C
(r

)

log−log neighbor count for 2−D data

(a) (b) (c) (d)

Figure 2: Intuition behind the intrinsic dimensionality (correlation dimension).

A B
slope = 1

slope = 2

log r

lo
g 

C
(r

) A

B

log|B(A,r)| and log|B(B,r)| vs. log r

log r

lo
g 

C
(r

)

(a) (b) (c)

Figure 3: A dataset that contains two subsets of different intrinsic dimensionality

a ball of radius r,

Gx(r) = lim
n→∞

1

n
|B(x, r)|.

The local growth curve Gx describes the density of the lo-
cal neighborhood of x for all distances r. In addition, the
Gx curve contains information about the growth rate of the
number of neighbors of x. We can now define the local-
correlation dimension (or local dimension) of point x.

Definition 2 (Local-Correlation Dimension). We
define the local-correlation dimension dx of point x, as

dx = lim
r,r′→0

log[Gx(r)/Gx(r′)]

log[r/r′]
. (3)

As in the case of correlation dimension, when dealing with
finite sets, we define the local growth curve to be Gx(r) =
1
n
|B(x, r)|, and we compute the local-correlation dimension

dx of a point x by the slope of Gx curve in log-log scale.
Notice that for finite sets the Gx curve is step-wise – its
value chances only when the radius grows to include the
next neighbor of a point. As a result, the local-growth curve
can be represented without loss of information by specifying
its value on a finite set of radii Dx ⊂ R, which we call the
domain of Gx.

3.3 Local representation
We now describe how to use the local growth curves and

the local-correlation dimension in order to represent the
dataset.

Let X = {x1, . . . , xn} be a dataset of n points in some
metric space. For each point xi we define its domain Dxi

,
and we compute the local growth curve Gxi

. We then take

the Gxi
curve in log-log scale, and we find the line that fits

it best, in a least squares sense. We use Lxi
to denote this

line, and we call it the linear growth model for point xi.

Definition 3 (Linear Growth Model). We refer to
the line

Lxi
(log r) = di log r + bi

as the Linear Growth Model for the point xi.

The slope di of the line Lxi
is an estimate of the local-

correlation dimension of point xi. The value bi is the coeffi-
cient computed by the line fitting. Using the linear growth
model, we can now represent the point xi using just two
numbers. The first number is the value di, the local di-
mension of the point xi. The second number is denoted by
ci = Lxi

(log r∗), and it corresponds to the density of the
dataset in a ball of radius r∗, centered on xi as it is es-
timated by the linear growth model Lxi

for point xi. For
example, for r∗ = 1, ci = bi. We defer the discussion about
the choice of value for r∗ to Section 4, Lemma 1. We call ci

the local density of the point xi. We write l(xi) = (di, ci) to
denote the representation of xi by these two parameters.

Definition 4 (Local representation). The mapping
l(xi) = (di, ci) is called the local representation of xi, where
ci = Lxi

(log r∗).

To illustrate the intuition behind local representation, con-
sider two specific points A and B that come from the two
different subsets in the example of Figure 3. Panel 3(c)
shows Gx(r) for x = A and x = B together with the fitted
lines. In our example, the local dimensionality of point A is
1.20 and that of point B is 1.98. Therefore, we are able to



distinguish the subsets with different intrinsic dimensional-
ity using the local dimensionality di.

As we will explain in the next section, it is meaningful to
ignore the parts of the local growth curve that correspond to
very small and very large radii. The reason is that, for small
r, the value of Gx(r) is sensitive to local noise effects. Thus,
ignoring small radii improves the robustness of the estimated
dimension. On the other hand, for large r too many points
contribute to the value of Gx(r). Therefore, Gx does not
capture local-neighborhood structure around x any more;
most curves look identical. For these reasons we restrict the
domain Dx of Gx(r) to a smaller subset Fx ⊆ Dx, which we
call the fitting set of Gx(r), and it is precisely the range over
which we fit the linear-growth model Lx. The details of how
the fitting set is determined are discussed in Section 4.2.

3.4 Overall clustering
The final step of our method is to detect clusters of points

that form low-dimensional manifolds in the ambient space
of the dataset. Taking advantage of the simplicity of the lo-
cal representation l(xi) = (di, ci), we can perform this step
using a standard clustering algorithm. Assuming that the
local representation maintains well the information about
the local density and the local dimensionality of the points,
the clustering process is relatively easy since it is an opera-
tion on two-dimensional data. For our experiments we used
the standard EM algorithm with full covariance matrices.
Furthermore, the 2-D representation offers an informative
visualization of the dataset. In a user-interactive system it
is usually easy to determine the underlying clusters in the
dataset.

Finally, we note that the output of our algorithm can be
further processed to discover dimensions of interest. First,
in case that the algorithm places two manifolds of same di-
mension and density into one cluster, but the two manifolds
do not intersect, then they can be separated by the single-
linkage clustering. Second, in case of axis aligned subspaces,
we can easily discover the attributes of interest by measuring
the variance along each dimension. Finally, in case that we
are interested in linear subspaces, running PCA will reveal
the directions of interest. All of these three tasks become
significantly easier once the appropriate subset of points has
been identified by our method.

4. ANALYSIS OF OUR METHOD
In this section we discuss the properties of our definitions,

and their implications in the overall approach. As our guide
in this discussion we consider the simple cases of points lying
on a 2-D grid and on a 1-D line.

4.1 Discussion and Examples
The definition of correlation dimension in Section 3 as-

sumes that the size of the set X is infinite. For an infinite
real line and an infinite real plane the dimensions are pre-
cisely 1 and 2, respectively. In practice, however, we deal
with finite sets with finite extent, so we can only compute
an estimate of the actual dimension. We will now study
the effect of finiteness on the local representation of the
points by investigating two simple cases. The first dataset
L consists of n one-dimensional points equally spaced on a
line. The second dataset G consists of n two-dimensional
points arranged on a grid. Ideally, the intrinsic dimension-
ality of the line should be one, and the dimensionality of the
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Figure 4: Boundary effects on the estimation of the
correlation dimension.

grid should be two. However, due to the finite size of the
datasets, the estimated dimensionalities are different.

Consider the points in the set L and assume that the point
xi is located at position i of the real line. Consider one of
the endpoints of the line, e.g., the leftmost point x1 of the
line. The local growth curve of x1 is Gx1

(r) = r
n

(when
computing |B(x1, r)| we do not count the point itself). For
the point xm in the middle of the line m = n/2, the local
growth curve is Gxm(r) = 2r

n
. In both of these cases, the

local dimensionality of points x1 and xm is one, as expected.
However, consider the point xp that lies in position p = n/4.
For radii r = 1..n

4
, Gxp(r) = 2r

n
, while for radii r = n

4
... 3n

4
,

Gxp(r) = r
n
. Due to this change in the local growth curve,

when fitting a line, the local dimensionality of the point xp

is underestimated. For example, for a line with 500 points,
the local dimensionality is estimated to be around 0.87. The
di values for all points are shown in Figure 4.

Determining the correct slope is even harder for the two-
dimensional grid. Consider the point xm in the middle of
the grid. For simplicity we will assume that the distance
between points is measured using the L∞ norm. It is not
hard to see that the local growth curve for this point is
Gxm(r) = 1

n
((2r + 1)2 − 1) = 1

n
(4r2 + 4r) (again, the point

xm is not counted in the computation). Due to the additive
term 4r we need to have r → ∞ in order for the local dimen-
sion dm of xm to tend to 2. In practice, this results in under-
estimating the dimension of the point. For a 50×50 grid the
local dimension of the middle points is estimated to be close
to 1.8. Furthermore, simple computations show that for a
point xs on the side of the grid, Gxs(r) = 1

n
(2r2 +3r), while

for a point xc on the corner of the grid, Gxc(r) = 1
n
(r2+2r).

Again, the local growth curve on the boundary of the grid
is different from that inside the grid. Therefore, when the
curve hits the boundary there is a change in the local growth
curve, which results in further underestimation of the local
dimension. An example with a 50 × 50 grid is shown in
Figure 4. The contour lines show how the local dimension
changes for different points of the grid. The maximum and
minimum values are shown on the plot.

We next consider the case of a dataset consisting of a line
embedded in a grid. We assume that the line consists of
grid points which are replicated µ times. The value µ is
the density of the line. For simplicity, assume that the line
lies in the middle of the grid and it is parallel to one axis
of the grid. Furthermore, in order to avoid dealing with
boundary points, assume that the grid extends to infinity in
all directions. For a point on the line x` it is not hard to



show that the local growth curve is Gx`
(r) = 1

n
((2r + 1)2 +

µ(2r + 1)− 1). When the value µ is large enough compared
to r the growth of Gx`

(r) is dominated by the linear term.
Of course as r → ∞, the quadratic part becomes dominant.
For a grid point, the growth is the same as before as long as
the ball around the point has not reached the line. When the
line is reached, the local growth curve becomes the same as
for a line point (this is also due to the fact that we consider
the L∞ distance, and the line is parallel to the axis).

In the next subsection we will see how to address the issues
raised by the previous examples. The idea is to compute the
local dimensionality dx of each point by fitting a line not to
the entire local growth curve Gx, but only on the fitting set
Fx. We discuss how to determine Fx next.

4.2 Determining the fitting set
An important issue in the definition of local growth curves

is the domain of radii over which they are defined. An im-
mediate idea is to define the curves over the interval ranging
from the minimal pairwise distance up to the diameter of the
dataset. Let R denote this interval. This is the maximal
interval over which the local growth curves can be defined.
However, this approach is extreme, since for most points, the
low part of the curve will be zero (balls with small radius
contain no points), while the upper part of the curve will
be one (balls with large radius contain the whole dataset).
This will result in poor estimates for the local dimension of
these points.

One approach for dealing with this problem is to restrict
the definition of the local growth curves over an interval
[rmin, rmax] ⊂ R, which one might believe that captures the
useful information of the local growth curve. However, this
approach is also problematic when the density of the dataset
differs in different regions of the space. Furthermore, for
points that lie in large dimensional spaces, the minimum and
maximum distances converge, so it is challenging to find a
meaningful interval.

To address these issues, we choose to define a different
domain Dx for each point in the dataset. This domain is
defined by growing a ball around x such that at each step
we extend the ball to include (at least) one more neighbor.
In other words, the domain Dx is precisely the set of radii
{r1, r2, ..., rn}, where rk is the distance of x to its k-th near-
est neighbor.

Following the discussion in Section 4.1, it becomes clear
that it is beneficial to restrict the domain Dx by consider-
ing the distances only up to some kmax -th nearest neighbor,
instead of all possible neighbors. This has the following ad-
vantages. First, it captures best the idea of locality upon
which our approach is based. As it was demonstrated in the
case of the line embedded in the grid, this can help discrimi-
nate between points that lie on different manifolds. Second,
it helps in avoiding strong boundary effects, since less points
hit the boundaries, and thus we can better estimate their
“real” dimension. This is shown in Figures 5 (a), (b), and
(c), where by restricting the interval from above, we obtain
a better estimation of the dimension for more points of the
line and the grid.

We further restrict the interval Rx from below, by consid-
ering only the neighbors that are no closer than the kmin-th
nearest neighbor. As discussed in Section 4.1, in the case
of the grid this helps obtain a better estimate of the dimen-
sion. This becomes obvious when comparing the the figures

(b) and (c) in Figure 5. Figure (c) is obtained by restricting
the interval Rx from below, where we obtain an estimate of
the dimension closer to 2.

Furthermore, for small values of k (i.e., for the very first
nearest neighbors) the radius rk might be affected by small
local variations of the density of the points. Such density
variations might include isolated points or unusually dense
areas. Our point is illustrated in Figure 5(d). We generated
100 points uniformly at random in a d-dimensional hyper-
cube, for d = 2, 5, and 10. By repeating the process of ran-
dom point generation 1000 times, we estimate the expected
distance and the variance of the k-th nearest neighbor from
a randomly selected point as a function of k. Figure 5(d)
shows that the variance of the distances of the very first
nearest neighbors is large. Therefore, by ignoring the k-th
nearest neighbors for k < kmin we obtain a more robust
estimation of the local dimension. We are now ready to
summarize our observations with the following simple defi-
nition.

Definition 5 (Fitting set). The set of radii Fx =

{rk ∈ Dx | r
(x)
kmin

≤ rk ≤ r
(x)
kmax

}, where r
(x)
kmin

and r
(x)
kmax

are
the distances of the kmin-th and kmax-th nearest neighbors of
x is called the fitting set.

In our experiments, we have found that the algorithm is
not particularly sensitive in the choice of kmin and kmax. For
example, the values kmin = 0.01 · n and kmax = 0.1 · n give
good quality of results in a wide variety of datasets.

4.3 Estimating local density
In this paragraph we derive an estimation for the ra-

dius r∗, which is used for computing the local density ci =
Lxi

(log r∗) for each xi. For simplicity of notation we rewrite
Equation (3) as Y = diX + bi. We also write X∗ = log r∗

and Y ∗ = diX
∗ +bi = ci. Notice that by fitting a line to the

curve Gxi
we obtain the parameters di and bi. The goal is to

compute the “best” choice of parameter log r∗ that achieves
the local representation l(xi) = (di, ci) for each xi.

The main observation is that by setting log r∗ = +∞ in
Equation (3), the resulting values ci of local densities are
perfectly positively correlated with the values di of local
dimensions. The reason is that for log r∗ = +∞ the order-
ing of ci’s is completely determined by the ordering of di’s.
Similarly, for log r∗ → −∞, the ci’s are perfectly negatively
correlated with di’s. Since our goal is to use the pair (di, ci)
that captures as much information for each xi as possible,
we would like to choose r∗ so that the parameters di and
ci are uncorrelated. Based on this idea we can estimate the
optimal radius r∗ for the local representation l(xi). Note
that it makes a considerable difference for the visualization
as well as for automated clustering algorithms, whether the
two-dimensional data (di, ci) are correlated or not.

Lemma 1. The value of r∗ for which di and ci are uncor-
related is given by

log r∗ = −

P
(di − d̄)(bi − b̄)P

(di − d̄)2

Proof. The correlation between the variables di and ci

can be estimated by the coefficient

rdc =

P
i(di − d̄)(ci − c̄)qP

i(di − d̄)2
P

i(ci − c̄)2
,
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Figure 5: Restricting the fitting interval

where d̄ = E[di] and c̄ = E[ci] are the expectations of di’s
and ci’s, respectively. To make the correlation zero we need
to choose r∗ so that the numerator of rdc is equal to zero. Let
b̄ = E[bi] be the expectation of bi’s. Since ci = diX

∗+di, by
linearity of expectation we get c̄ = E[ci] = E[bi + X∗di] =
b̄ + X∗d̄. The numerator of the correlation coefficient can
now be written asX

(di − d̄)(ci − c̄)

=
X

(di − d̄)(bi + X∗di − b̄ − X∗d̄)

=
X

(di − d̄)(X∗(di − d̄) + (bi − b̄))

= X∗
X

(di − d̄)2 +
X

(di − d̄)(bi − b̄).

Setting rdc = 0 gives the optimal value of log r∗.

5. THE ALGORITHM
We now present the Dimension Induced Clustering (DIC)

algorithm. The algorithm works on the representation of the
dataset defined in Section 3. The objective of the algorithm
is to partition points so that points in the same cluster lie
on dense manifolds of the same dimension.

5.1 The DIC algorithm
The outline of the DIC algorithm is shown in Algorithm 1.

The input to the algorithm is a set X of n elements, that
we want to cluster in b clusters. In first step, the algorithm
computes for each element xi, the distance of xi to its k-th
nearest neighbor for all k = kmin, . . . , kmax. The distances
of the nearest neighbors of xi specify completely the local
growth curve Gxi

. By fitting the linear growth model Lxi

on Gxi
and by estimating the local density, as in section 4.3,

we compute the local representation l(xi) = (di, ci) for each
xi. Thus, we map the set X into a two dimensional set XLR

that contains the local representation of all points. The task
now becomes to cluster the two-dimensional points in XLR.
Clustering in two dimensions is conceptually much simpler
than clustering in high-dimensional spaces. The correct clus-
tering can often be determined even by simple visual inspec-
tion. In the automated case applying an EM (Expectation
Maximization) algorithm [15] for fitting b Gaussian distrib-
utions on the data works well in most cases. If the set X
consists of b sufficiently dense subsets that lie on manifolds
of different dimension, which are sufficiently separated, the
algorithm will be able to separate these subsets.

5.2 Efficiency of the DIC algorithm
The complexity of the DIC algorithm is dominated by

Algorithm 1 The DIC algorithm

Input: Dataset X of n points, number of clusters b
Ouput: Clustering of X into b clusters
1: for all i ∈ {1, . . . , n} do
2: Compute k-th NN of xi, for k = kmin . . . kmax

3: Compute the local representation (di, ci) of xi.
4: end for
5: XLR = {(d1, c1), . . . , (dn, cn)}
6: Cluster the set XLR into b clusters.

the complexity of computing for every point xi the distance
to the kmin to kmax neighbors of the point xi. The simple
solution to this problem is to compute the distances between
all points in the set X, and for each point xi sort the points
with respect to their distance from point xi, and retrieve the
necessary information. The time for computing all pairwise
distances is O(n2).

A different approach is to construct an index for the ele-
ments in X that supports fast execution of k-nearest neigh-
bor queries. In case that X consists of vector data, spatial
index structures can be used for the efficient calculation such
as [6,9,17]. In case of metric data the OMNI framework [13],
or data structures like the M-tree [10] can be used. Since
the computation of the local representation is inherently ap-
proximate, the use of approximative methods for k-nearest
neighbor queries such as locality-sensitive hashing [14], is
also possible.

Investigating the construction of the appropriate nearest
neighbor index is beyond the scope of this paper. We assume
that such an index exists, and we use it as a black box for
obtaining the distances of the k-th nearest-neighbor queries
for k = kmin, . . . , kmax. The efficiency of the DIC algorithm
is determined by the efficiency of this index.

6. EXPERIMENTS
In this section we study experimentally the properties and

the performance of the DIC algorithm.

6.1 Applications and Datasets
We apply our algorithms on the following types of datasets.

Embedded m-flats: Consider a set X of n points in R
d

that can be decomposed in two subsets N , and F , of size
s and f respectively, where n = s + f . The points in N
are distributed uniformly at random in (0, 1)d. The points
in F take values normally distributed around 0.5, with vari-



ance 0.01 in the first d − m coordinates. In the last m co-
ordinates, they take values uniformly distributed in (0, 1).
As s, f → ∞ the intrinsic dimensionality of the sets N and
F approaches d and m respectively. We call the set F an
m-flat. The value m is the dimension of the m-flat. The set
N can be thought of as an m-flat of dimension d, so we say
that N has full dimension.

The objective of the algorithms is to partition the set X
into sets N and F . We apply the DIC algorithm on X,
requesting 2 clusters. We will demonstrate that the DIC
algorithm, is able to return the sets F and N as the clusters
even when m and d are relatively close. The flat F is the set
of nodes with the smaller average intrinsic dimensionality.

Manifolds within manifolds: The setting is similar to
the previous one, only this time the set X contains more
than one m-flats of different dimensions. Namely, the set
X can be decomposed into sets N , F1, . . . , Fp, where N has
full dimension d, and F1, F2, . . . , Fp are m-flats with dimen-
sions m1 < m2 < . . . < mp respectively. The m-flats are
constructed as described above. Note that since for every
flat Fi we always “fix” the first d − mi coordinates, the m-
flats with lower dimension are embedded within the m-flats
of higher dimensions. This results in creating a chain hier-
archy of manifolds where every manifold is embedded in all
the preceding ones in the chain. Again, we apply the DIC
algorithm, requesting p+1 clusters. When the dimensional-
ities of the m-flats are sufficiently separated, the algorithm
returns as clusters that p flats and the set N . The average
estimated dimension values for each set are ordered accord-
ing to the actual dimension of the flats.

Low Rank Sub-Matrices: The input is an n × m matrix
that takes values in [0, 1]. Within the matrix there is a col-
lection of k rows and ` columns, such that the combinatorial
k × ` sub-matrix has low rank. The objective is to identify
the rows and columns of this sub-matrix.

We generate such datasets as follows. First we generate
a k × ` matrix S of rank exactly r, where r � min{n, m}.
We then plant it in the matrix M . The remaining elements
of M are generated uniformly at random, scaled so that the
mean is zero and the standard deviation is one. Therefore,
if we remove either the k rows, or the ` columns of matrix
S from M , we obtain a matrix of rank min{n − k, m} and
min{n, m− `} respectively. To this matrix we add a “noise”
matrix X with entries distributed normally around 0, with
variance 0.05.

In order to extract S from matrix M we apply the DIC
algorithm in two steps. First we perform a clustering of
the rows, and we identify the rows of the matrix S. The
dimension of these rows is m − ` + r, as opposed to m for
the rest of the rows, so the DIC algorithm can easily identify
them. We then cluster the columns of M . The dimension of
the columns in S is n− k + r as opposed to n for the rest of
the columns, so again DIC manages to partition the rows.
Given the rows and columns we can extract matrix S.

6.2 Experiments with the DIC algorithm
In this section we present experiments with the DIC algo-

rithm on various datasets. In all runs of the algorithm, we
set kmin = 10, and kmax = 100, two values that we observed
that they work well in practice.

We start by experimenting with datasets that contain a
single m-flat F , embedded in a space of higher dimension d,

together with a set N of noise points distributed uniformly
at random. The datasets are constructed as described in
section 6.1. Since the objective is to separate the sets F
and N , we evaluate our algorithm by looking into the total
classification error of the algorithm. The total classification
error Etot is computed as follows: We first compute the
confusion matrix C whose Cij entry contains the number
of overlapping points between the i-th cluster of the ground
truth and the j-th cluster of the clustering found by the
algorithm. Then Etot = 1 − (

P
i maxj Cij)/n.

Our experiments indicate that the DIC algorithm per-
forms exceptionally well in this setting, even in the case
that the dimension of the host space and the m-flat are very
close, or if the m-flat is embedded in a high-dimensional
space. Figure 6(a) plots the local representation of the data
points when d = 3 and m = 2, and their clustering. Fig-
ure 6(b) shows the case where d = 50 and m = 40. In both
cases, the size of the dataset is 1,000 points, of which 500 be-
long to the m-flat. We observe that the algorithm manages
to identify the m-flats successfully. The total classification
error is 8.1% in the first case, and 1.2% in the second case.

In order to better understand the performance of DIC, we
performed a more detailed experiment, generating datasets
with the dimension of the host space being d = 2 . . . 10, and
the dimension of the m-flat ranging from 1 to d − 1. In all
cases, the dataset consists of 1,500 points, 500 of which be-
long to the m-flat. Table 1 reports the average classification
error for 20 runs of the algorithm (the numbers are percent-
ages). We observe that the classification error is never more
than 39%, and this occurs in the case that the dimension of
the host space and that of the m-flat differ by just one.

We now turn our attention to cases where there are more
than one m-flats in the dataset. Figures 6(c) and (d) show
the plots of the local representations of two datasets that
contain flats of different dimension. In the first case the
dimension of the host space is d = 10 and the two manifolds
have dimension m1 = 3, and m2 = 6. In the second case
we have (m1, m2, d) = (10, 20, 30), In both cases all three
sets of points F1, F2, N contain 500 points each. We observe
that the DIC algorithm manages to discriminate the three
sets. The average classification error is 1.53% for the first
case, and 0.51% for the second case, where the average is
taken over 20 runs. Datasets with more than three flats are
examined in the full version of the paper.

We also experiment with low rank matrices, trying to de-
tect a (combinatorial) 100×100 submatrix of rank 2, within
a 1000 × 1000 matrix. The algorithm proves to be quite
successful, obtaining classification error just 0.16%, where
the average is taken over 10 runs. In this case the large di-
mension of the matrix works in favor of our algorithm. The
algorithm often achieves a perfect partition of the matrix (4
out of the 10 runs).

The problem of finding low rank sub-matrices has been
applied to microarray data. Wang et. al. [23] report a solu-
tion for rank-1 sub-matrices. We experiment with the same
microarray data used in [23]1. The data contains the ex-
pression levels of 2884 genes (rows) for 17 different patients
(columns). Finding combinatorial low-rank matrices in such
types of data is important since they represent subsets of
genes that are co-regulated on some subsets of patients. Fig-
ure 7(a) shows a plot of the local representation of the rows

1The data can be obtained at http://arep.med.harvard.
edu/biclustering/yeast.matrix
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Figure 6: Discovering m-flats with DIC, (x: dimensionality, y: density)

1 2 3 4 5 6 7 8 9
2 9.2
3 13.0 20.14
4 14.9 1.53 29.28
5 16.1 0.26 6.74 26.42
6 15.4 0.08 0.68 6.99 31.1
7 7.1 0.02 0.17 1.25 13.7 33.4
8 10.5 0.00 0.02 0.41 2.1 14.6 36.3
9 1.4 0 0.01 0.08 0.6 2.9 18.7 37.9

10 7.4 0.01 0.01 0.04 0.2 0.9 4.2 20.7 38.3

Table 1: Classification error of discovering m-flat clusters
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Figure 7: Analysis of microarray data, (a) dimen-
sionality and density for each row, (b) density con-
tours in the rect. area of (a) reveal two clusters.

(genes) of the matrix. The scatter plot shows no obvious
clustering except a few outliers. A more detailed density
estimation of the 2D data reveals two hidden clusters. The
figure 7(b) shows the density contour lines, estimated by a
30 × 30 histogram (light gray means high density). There
is one small cluster the rows of which has dimensionality
around 3 and lower density than the bigger cluster with in-
trinsic dimensionality of about 6. Note that the two clusters
can not be found using either density or intrinsic dimen-
sionality. This shows that combining density with intrinsic
dimensionality is an improvement upon previous methods.

6.3 Comparison with OPTICS
In this subsection we compare our algorithm with OP-

TICS on the task of finding m-flats within noise. OPTICS
takes as input the parameter εmax which is the maximum
linkage distance, and it produces an ordered visualization
of the points in the dataset from which the lower part of a
cluster hierarchy can be derived. In order to get rid of the
dependency from εmax we set it in all cases to the maxi-

mum distance in the particular data set, so that OPTICS
computes the whole hierarchy.

The primary output of the OPTICS algorithm is a plot.
The x axis of the plot shows the indices of the data points
in the ordering produced by OPTICS. The y axis in the
visualization is reachability distance, which is small if the
density at that point is high. The computed hierarchy by
OPTICS is similar to a single linkage hierarchy. The plot
produced by OPTICS defines clusters as valleys. A valley is
defined by a horizontal cutting line, which is chosen by the
user. In case of sub-clusters within larger clusters, the plot
by OPTICS consists of a large valley, which includes at the
bottom smaller valleys divided by small hills.

The OPTICS algorithm assumes that each cluster in the
true hierarchy consists of at least two sub-clusters. How-
ever, in case of m-flats embedded in other m-flats of higher
dimension, this is not true. But one can still look for knees
at the right side of a valley in the visualization plot of OP-
TICS, as it is shown in Figure 8(a). This allows to specify
a cutoff value for the hierarchical algorithm. The cutting
line should be set to the beginning of the knee. Note that
in case that we have multiple m-flats, one embedded within
the other it is not possible for OPTICS to identify all m-flats
using a single cutoff value.

In our comparison with OPTICS we consider datasets
where a single m-flat is embedded in a higher dimensional
space. The datasets contain 1,000 points, while both the m-
flat, as well as the noise set (containing points, uniformly dis-
tributed in the full-dimensional space) consists of 500 points
each. The following data sets are generated: 2D-flat in 3D,
3D-flat in 5D, 5D-flat in 8D, 6D-flat in 10D, 40D-flat in 50D,
and 90D-flat in 100D.

Figure 8(a) shows the plot generated by OPTICS for the
2D-flat in 3D. The knee at the right side of the lowest val-
ley is clearly visible and so we choose the cutting value to
be 0.09. However, for data with dimension larger than 10,
although the algorithm produces the correct ordering with
most of the points of the m-flat being in the beginning of
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Figure 8: OPTICS plots for (a) 2D-flat within 3D
noise (b) 40D-flat within 50D noise

Data Etot (OPTICS) Etot (DIC)
2D in 3D 0.115 0.077

3D in 5D 0.045 0.029

5D in 8D 0.087 0.024

6D in 10D 0.045 0.010

40D in 50D n.a. 0.010

90D in 100D n.a. 0.072

Table 2: Classification Error of OPTICS and DIC

the ordering, the knee is not longer visible. An example is
shown in figure 8(b). Therefore, we could not compute a
clustering with OPTICS for the last two high-dimensional
data set. Any value seems equally good, resulting in arbi-
trarily good, or bad results. The same problem arises when
trying to use OPTICS for identifying low-rank sub-matrices.

In Table 2 we compare the classification error of the clus-
terings found by OPTICS and the DIC algorithm. The clas-
sification errors are similar, with DIC being a little more
accurate. The main conclusion from this experiment is that
the density-based clustering method OPTICS fails for high-
dimensional data. In such cases density alone is not sensitive
enough to reveal the structure of the data. Furthermore,
the OPTICS algorithm requires careful fine-tuning of the
parameters in order to produce a meaningful clustering, as
opposed to the DIC algorithm which has only few, easy to
set parameters. Finally, we note that the DIC algorithm is
order independent, as opposed to OPTICS which is sensitive
to the order in which the points are visited.

The case of multiple m-flats is considerably more difficult
for OPTICS. Multiple m-flats will appear as a single valley
since they differ only by density and not by location, which
means that one has to find multiple knees. However, the
visibility of the knees degrades as the dimensionality of the
m-flats increases.

7. CONCLUSIONS
We address the problem of discovering clusters of points

that lie on low-dimensional manifolds. Our approach is to
extend the definition of fractal correlation dimension and
create a local-growth model for each point. Based on this
model, each point in the dataset can be mapped to a lo-
cal representation consisting of a density coefficient and a
dimensionality coefficient. We argue that the local repre-
sentation preserves well the information about the underly-
ing manifolds, and discovering those manifolds becomes a
two-dimensional clustering problem.

Our method is able to discover low-dimensional mani-
folds that are not necessarily linear, it can find clusters

within clusters, as well as clusters that occupy the same
space. Furthermore the method does not require a vector-
space representation of the data; it can be used equally well
for metric datasets. We perform experiments in which we
demonstrate the effectiveness of our algorithms for discover-
ing low-dimensional m-flats and for detecting low-rank sub-
matrices. We also show that our method outperforms other
approaches that are based only on density and do not take
into account the notion of dimensionality.
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