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Abstract

Outlier detection is an integral part of data mining and
has attracted much attention recently [8, 15, 19]. In this
paper, we propose a new method for evaluating outlier-
ness, which we call theLocal Correlation Integral(LOCI).
As with the best previous methods, LOCI is highly effective
for detecting outliers and groups of outliers (a.k.a. micro-
clusters). In addition, it offers the following advantages and
novelties: (a) It provides an automatic, data-dictated cut-
off to determine whether a point is an outlier—in contrast,
previous methods force users to pick cut-offs, without any
hints as to what cut-off value is best for a given dataset.
(b) It can provide a LOCI plot for each point; this plot
summarizes a wealth of information about the data in the
vicinity of the point, determining clusters, micro-clusters,
their diameters and their inter-cluster distances. None of
the existing outlier-detection methods can match this fea-
ture, because they output only a single number for each
point: its outlier-ness score. (c) Our LOCI method can
be computed as quickly as the best previous methods. (d)
Moreover, LOCI leads to a practically linear approximate
method,aLOCI (for approximate LOCI), which provides
fast highly-accurate outlier detection. To the best of our
knowledge, this is the first work to use approximate compu-
tations to speed up outlier detection.

∗The full version of the paper is available as technical report CMU-CS-
02-188 (see alsohttp://www.db.cs.cmu.edu/Pubs/ ).
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Experiments on synthetic and real world data sets show
that LOCI and aLOCI can automatically detect outliers and
micro-clusters, without user-required cut-offs, and that they
quickly spot both expected and unexpected outliers.

1 Introduction

Due to advances in information technology, larger and
larger amounts of data are collected in databases. To make
the most out of this data, efficient and effective analysis
methods are needed that can extract non-trivial, valid, and
useful information. Considerable research has been done
toward improving knowledge discovery in databases (KDD)
in order to meet these demands.

KDD covers a variety of techniques to extract knowl-
edge from large data sets. In several problem domains (e.g.,
surveillance and auditing, stock market analysis, health
monitoring systems, to mention a few), the problem of de-
tecting rare events, deviant objects, and exceptions is very
important. Methods for finding such outliers in large data
sets are drawing increasing attention [1, 2, 5, 8, 13, 16,
17, 20, 18, 19]. The salient approaches to outlier detec-
tion can be classified as eitherdistribution-based[5], depth-
based[16], clustering[14], distance-based[17, 20, 18, 19],
or density-based[8] (see Section 2).

In this paper we propose a new method (LOCI—LOcal
Correlation Integral method) for finding outliers in large,
multidimensional data sets. The main contributions of our
work can be summarized as follows:

• We introduce themulti-granularity deviation factor
(MDEF), which can cope with local density variations
in the feature space and detect both isolated outliers as
well as outlying clusters. Our definition is simpler and
more intuitive than previous attempts to capture simi-
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lar concepts [8]. This is important, because the users
who interpret the findings of an outlier detection tool
and make decisions based on them are likely to be do-
main experts, not KDD experts.

• We propose a novel (statistically intuitive) method that
selects a point as an outlier if its MDEF value de-
viates significantly (more than three standard devia-
tions) from the local averages. We also show how to
quickly estimate the average and standard deviation of
MDEF values in a neighborhood. Our method is par-
ticularly appealing, because it provides an automatic,
data-dictated cut-off for determining outliers, by tak-
ing into account the distribution of distances between
pairs of objects.

• We present several outlier detection schemes and al-
gorithms using MDEF. Our LOCI algorithm, using an
exact computation of MDEF values, is at least as fast
as the best previous methods.

• We show how MDEF lends itself to a much faster,
approximate algorithm (aLOCI) that still yields high-
quality results. In particular, because the MDEF is
associated with thecorrelation integral [6, 23], it is
an aggregate measure. We show how approximation
methods such asbox countingcan be used to reduce
the computational cost to onlyO(kN), i.e., linear
both with respect to the data set sizeN and the num-
ber of dimensionsk. Previous methods are consider-
ably slower, because for each point, they must iterate
over every member of a local neighborhood or cluster;
aLOCI does not.

• We extend the usual notion of an “outlier-ness” score
to a more informativeLOCI plot. Our method com-
putes a LOCI plot for each point; this plot summarizes
a wealth of information about the points in its vicin-
ity, determining clusters, micro-clusters, their diame-
ters and their inter-cluster distances. Such plots can
be displayed to the user, as desired. For example, re-
turning the LOCI plots for the set of detected outliers
enables users to drill down on outlier points for further
understanding. None of the existing outlier-detection
methods can match this feature, because they restrict
themselves to a single number as an outlier-ness score.

• We present extensive experimental results using both
real world and synthetic data sets to verify the ef-
fectiveness of the LOCI method. We show that, in
practice, the algorithm scales linearly with data size
and with dimensionality. We demonstrate the time-
quality trade-off by comparing results from the exact
and approximate algorithms. The approximate algo-
rithm can, in most cases, detect all outstanding outliers
very efficiently.

Local Density Problem Multi−granularity Problem

Figure 1. (a) Local density problem, and (b)
multi-granularity problem

To the best of our knowledge, this is the first work to use ap-
proximate computations to speed up outlier detection. Us-
ing fast approximate calculations of the aggregates com-
puted by an outlier detection algorithm (such as the num-
ber of neighbors within a given distance) makes a lot of
sense for large databases. Considerable effort has been in-
vested toward finding good measures of distance. However,
very often it is quite difficult, if not impossible, to precisely
quantify the notion of “closeness”. Furthermore, as the data
dimensionality increases, it becomes more difficult to come
up with such measures. Thus, there is already an inherent
fuzziness in the concept of an outlier and any outlier score
is more of an informative indicator than a precise measure.

This paper is organized as follows. In Section 2 we give
a brief overview of related work on outlier detection. Sec-
tion 3 introduces the LOCI method and describes some ba-
sic observations and properties. Section 4 describes our
LOCI algorithm, while Section 5 describes our aLOCI al-
gorithm. Section 6 presents our experimental results, and
we conclude in Section 7.

2 Related work

The existing approaches to outlier detection can be clas-
sified into the following five categories.

Distribution-based approach: Methods in this category
are typically found in statistics textbooks. They deploy
some standard distribution model (e.g., Normal) and flag
as outliers those objects which deviate from the model [5,
12, 21]. However, most distribution models typically apply
directly to the feature space and are univariate (i.e., have
very few degrees of freedom). Thus, they are unsuitable
even for moderately high-dimensional data sets. Further-
more, for arbitrary data sets without any prior knowledge
of the distribution of points, we have to perform expensive
tests to determine which model fits the data best, if any!

Depth-based approach: This is based on computa-
tional geometry and computes different layers ofk-d convex
hulls [16]. Objects in the outer layer are detected as outliers.
However, it is well-known that these algorithms suffer from
the dimensionality curse.
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Clustering approach: Many clustering algorithms de-
tect outliers as by-products [14]. However, since the main
objective is clustering, they are not optimized for outlier de-
tection. Furthermore, in most cases, the outlier detection
criteria are implicit and cannot easily be inferred from the
clustering procedures. An intriguing clustering algorithm
using the fractal dimension has been suggested by [4]; how-
ever it has not been demonstrated on real datasets.

The above three approaches for outlier detection are not
appropriate for high-dimensional, large, arbitrary data sets.
However, this is often the case with KDD in large databases.
The following two approaches have been proposed and are
attracting more attention.

Distance-based approach: This was originally pro-
posed by E.M. Knorr and R.T. Ng [17, 20, 18, 19]. An
object in a data setP is adistance-based outlierif at least a
fractionβ of the objects inP are further thanr from it. This
outlier definition is based on a single, global criterion deter-
mined by the parametersr andβ. This can lead to problems
when the data set has both dense and sparse regions [8] (see
Figure 1(a); either the left outlier is missed or every object
in the sparse cluster is also flagged as an outlier).

Density-based approach: This was proposed by M.
Breunig, et al. [8]. It relies on thelocal outlier factor(LOF)
of each object, which depends on the local density of its
neighborhood. The neighborhood is defined by the distance
to theMinPts-th nearest neighbor. In typical use, objects
with a high LOF are flagged as outliers. W. Jin, et al. [15]
proposed an algorithm to efficiently discover top-n outliers
using clusters, for a particular value ofMinPts.

LOF does not suffer from the local density problem.
However, selectingMinPts is non-trivial. In order to de-
tect outlying clusters,MinPts has to be as large as the size
of these clusters (see Figure 1(b); if we use a “shortsighted”
definition of a neighborhood—i.e., too few neighbors—then
we may miss small outlying clusters), and computation cost
is directly related toMinPts. Furthermore, the method ex-
hibits some unexpected sensitivity on the choice ofMinPts.
For example, suppose we have only two clusters, one with
20 objects and the other with 21 objects. ForMinPts = 20,
all objects in the smaller cluster have large LOF values,
and this affects LOF values over any range that includes
MinPts = 20.

In contrast, LOCI automatically flags outliers, based
on probabilistic reasoning. Also, MDEF is not so sen-
sitive to the choice of parameters, as in the above 20-
21 clusters example. Finally, LOCI is well-suited for
fast, one pass,O(kN) approximate calculation. Although
some algorithms exist for approximate nearest neighbor
search [3, 7, 11], it seems unlikely that these can be used to
achieveO(kN) time with LOF. Our method uses an aggre-
gate measure (the proposed local correlation integral) that
relies strictly on counts. Because it can be estimated (with

α r

p1

p2

2n(p  ,   r)α

n(p ,  r)1α

n(p  ,   r)3 α

n(p ,r)i

n(p ,  r)αip3

pi

r

Figure 2. Definitions for n and n̂—for instance
n(pi, r) = 4, n(pr, αr) = 1, n(p1, αr) = 6 and
n̂(pi, r, α) = (1 + 6 + 5 + 1)/4 = 3.25.

box-counting)without iterating over every point in a set, it
can easily cope with multiple granularities, without an im-
pact on speed.

3 Proposed method

One can argue that, intuitively, an object is an “outlier”
if it is in some way “significantly different” from its “neigh-
bors.” Two basic questions that arise naturally are:(a) What
constitutes a “neighborhood?”(b) How do we determine
“difference” and whether it is “significant?” Inevitably, we
have to make certain choices. Ideally, these should lead to
a definition that satisfies the following, partially conflicting
criteria: (a) It is intuitive and easy to understand: Those
who interpret the results are experts in their domain and not
on outlier detection.(b) It is widely applicable and provides
reasonable flexibility: Not everyone has the same idea of
what constitutes an outlier and not all data sets conform to
the same, specific rules (if any).(c) It should lend itself to
fast computation: This is obviously important with today’s
ever-growing collections of data.

3.1 Multi-granularity deviation factor (MDEF)

In this section, we introduce the multi-granularity devi-
ation factor (MDEF), which satisfies the properties listed
above. Let ther-neighborhood of an objectpi be the set of
objects within distancer of pi.

Intuitively, the MDEF at radiusr for a pointpi is the
relative deviation of its local neighborhood density from the
average local neighborhood density in itsr-neighborhood.
Thus, an object whose neighborhood density matches the
average local neighborhood density will have an MDEF of
0. In contrast, outliers will have MDEFs far from 0.

To be more precise, we define the following terms (Ta-
ble 1 describes all symbols and basic definitions). Let
n(pi, αr) be the number of objects in theαr-neighborhood
of pi. Let n̂(pi, r, α) be the average, over all objectsp in the
r-neighborhood ofpi, of n(p, αr) (see Figure 2). The use
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Symbol Definition

P Set of objectsP = {p1, . . . , pi, . . . , pN}.
pi

N Data set size (|P| ≡ N ).
k Dimension of data set, i.e., whenP is a vector

space,pi = (p1
i , p

2
i , . . . , p

k
i ).

d(pi, pj) Distance betweenpi andpj .
RP Point set radius, i.e., RP ≡

maxpi,pj∈P d(pi, pj).

NN (pi, m) The m-th nearest neighbor of objectpi

(NN (pi, 0) ≡ pi).
N (pi, r) The set ofr-neighbors ofpi, i.e.,

N (pi, r) ≡ {p ∈ P | d(p, pi) ≤ r}

Note that the neighborhood containpi itself,
thus the counts can never be zero.

n(pi, r) The number of r-neighbors of pi, i.e.,
n(pi, r) ≡ |N (pi, r)|.

n̂(pi, r, α) Average of n(p, αr) over the set of r-
neighbors ofpi, i.e.,

n̂(pi, r, α) ≡
∑

p∈N (pi,r) n(p, αr)

n(pi, r)

σn̂(pi, r, α) Standard deviation ofn(p, αr) over the set of
r-neighbors, i.e.,

σn̂(pi, r, α) ≡√√√√∑
p∈N (pi,r) (n(p, αr)− n̂(pi, r, α))2

n(pi, r)

When clear from the context (n̂), we use just
σn̂.

MDEF (pi, r, α) Multi-granularity deviation factor for pointpi

at radius (or scale)r.
σMDEF (pi, r, α) Normalized deviation (thus, directly compara-

ble toMDEF ).
kσ Determines what issignificantdeviation, i.e.,

points are flagged as outliers iff

MDEF (pi, r, α) > kσσMDEF (pi, r, α)

We fix this value tokσ = 3 (see Lemma 1).

C(pi, r, α) Set of cells on some grid, with cell side2αr,
each fully contained withinL∞-distancer
from objectpi.

Ci Cell in some grid.
ci The object count within the corresponding cell

Ci.
Sq(pi, r, α) Sum of box counts to theq-th power, i.e.,

Sq(pi, r, α) ≡
∑

Ci∈C(pi,r,α)

cq
i

Table 1. Symbols and definitions.

of two radii serves to decouple the neighbor size radiusαr
from the radiusr over which we are averaging. We denote
as thelocal correlation integralthe function̂n(pi, α, r) over
all r.

Definition 1 (MDEF) For any pi, r and α we define the
multi-granularity deviation factor(MDEF) at radius (or
scale)r as:

MDEF (pi, r, α) =
n̂(pi, r, α)− n(pi, αr)

n̂(pi, α, r)
(1)

= 1− n(pi, αr)
n̂(pi, α, r)

(2)

Note that ther-neighborhood for an objectpi always con-
tainspi. This implies that̂n(pi, α, r) > 0 and so the above
quantity is always defined.

For faster computation of MDEF, we will sometimeses-
timatebothn(pi, αr) andn̂(pi, r, α). This leads to the fol-
lowing definitions:

Definition 2 (Counting and sampling neighborhood)
The counting neighborhood(or αr-neighborhood) is the
neighborhood of radiusαr, over which eachn(p, αr) is es-
timated. Thesampling neighborhood(or r-neighborhood)
is the neighborhood of radiusr, over which we collect
samples ofn(p, αr) in order to estimatên(pi, r, α).

In Figure 2, for example, the large circle bounds the sam-
pling neighborhood forpi, while the smaller circles bound
counting neighborhoods for variousp.

The main outlier detection scheme we propose relies on
the standard deviation of theαr-neighbor count over the
sampling neighborhood ofpi. We thus define the following
quantity

σMDEF (pi, r, α) =
σn̂(pi, r, α)
n̂(pi, r, α)

(3)

which is the normalized standard deviationσn̂(pi, r, α) of
n(p, αr) for p ∈ N (pi, r) (in Section 5 we present a fast,
approximate algorithm for estimatingσMDEF ).

The main reason we use anextendedneighborhood (α <
1) for sampling is to enable fast, approximate computation
of MDEF as explained in Section 5. Besides this,α < 1 is
desirable in its own right to deal with certain singularities in
the object distribution (we do not discuss this due to space
considerations).

Advantages of our definitions:Among several alterna-
tives for an outlier score (such asmax(n̂/n, n/n̂), to give
one example), our choice allows us to use probabilistic ar-
guments for flagging outliers. This is a very important point
and is exemplified by Lemma 1 in Section 3.2. The above
definitions and concepts make minimal assumptions. The
only general requirement is that a distance is defined. Ar-
bitrary distance functions are allowed, which may incorpo-
rate domain-specific, expert knowledge, if desired. Further-
more, the standard deviation scheme assumes that pairwise
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distancesat a sufficiently small scaleare drawn from a sin-
gle distribution, which is reasonable.

For the fast approximation algorithms, we make the fol-
lowing additional assumptions (the exact algorithms do not
depend on these):

• Objects belong to ak-dimensional vector space, i.e.,
pi = (p1

i , p
2
i , . . . , p

k
i ). This assumption holds in most

situations. However, if the objects belong to an arbi-
trary metric space, then it is possible to embed them
into a vector space. There are several techniques for
this [9] which use theL∞ norm on the embedding vec-
tor space1.

• We use theL∞ norm, which is defined as||pi−pj ||∞ ≡
max1≤m≤k |pm

i −pm
j |. This is not a restrictive hypoth-

esis, since it is well-known that, in practice, there are
no clear advantages of one particular norm over an-
other [10, 11].

3.2 LOCI outlier detection

In this section, we describe and justify our main outlier
detection scheme. It should be noted that, among all alter-
natives in the problem space LOCI can be easily adapted
to match several choices. It computes the necessary sum-
maries in one pass and the rest is a matter of interpretation.

In particular, given the above definition of MDEF, we
still have to make a number of decisions. In particu-
lar, we need to answer the following questions:(a) Sam-
pling neighborhood: Which points constitute the sampling
neighborhood ofpi, or, in other words, which points do we
average over to computên (and, in turn, MDEF) for api in
question?(b) Scale:Regardless of the choice of neighbor-
hood, over what range of distances do we comparen and
n̂? (c) Flagging: After computing the MDEF values (over
a certain range of distances), how do we use them to choose
the outliers?

LOCI outlier detection method. The proposed LOCI out-
lier detection method answers the above questions as fol-
lows. Advantages and features of LOCI are due to these de-
sign choices combined with inherent properties of MDEF.

• Large sampling neighborhood: For each point and
counting radius, the sampling neighborhood is selected
to be large enough to contain enough samples. We
chooseα = 1/2 in all exact computations, and we
typically useα = 1/16 in aLOCI (introduced in Sec-
tion 5) for robustness (particularly in the estimation of
σMDEF ).

1Given objectsπi in a metric spaceM with distance functionδ(πi, πj),
one typical approach is to choosek landmarks{Π1, . . . , Πk} ⊆ M and
map each objectπi to a vector with componentspj

i = δ(πi, Πj).

• Full-scale: The MDEF values are examined for a wide
range of sampling radii. In other word, the maxi-
mum sampling radius isrmax ≈ α−1RP (which cor-
responds to maximum counting radius ofRP). The
minimum sampling radiusrmin is determined based
on the number of objects in the sampling neighbor-
hood. We always use a smallest sampling neighbor-
hood with n̂min = 20 neighbors; in practice, this is
small enough but not too small to introduce statistical
errors in MDEF andσMDEF values.

• Standard deviation-based flagging: A point is
flagged as an outlier, if forany r ∈ [rmin , rmax ] its
MDEF is sufficientlylarge, i.e.,

MDEF (pi, r, α) > kσσMDEF (pi, r, α)

In all our experiments, we usekσ = 3 (see Lemma 1).

The standard deviation-based flagging is one of the main
features of the LOCI method. It replaces any “magic cut-
offs” with probabilistic reasoning based onσMDEF . It takes
into accountdistribution of pairwise distancesand com-
pares each object to those in its sampling neighborhood.
Note that, even if the global distribution of distances varies
significantly (e.g., because it is a mixture of very different
distributions), the use of thelocal deviation successfully
solves this problem. In fact, in manyreal data sets, the
distribution of pairwise distances follows a specific distri-
bution over all or most scales [23, 6]. Thus, this approach
works well for many real data sets. The user may alter the
minimum neighborhood sizermin andkσ if so desired, but
in practice this is unnecessary.

Lemma 1 (Deviation probability bounds) For any distri-
bution of pairwise distances, and for any randomly selected
pi, we have

Pr {MDEF (pi, r, α) > kσσMDEF (pi, r, α)} ≤ 1
k2

σ

Proof From Chebyshev’s inequality it follows that

Pr {MDEF (pi, r, α) > kσσMDEF (pi, r, α)}
≤ Pr {|MDEF (pi, r, α)| > kσσMDEF (pi, r, α)}

≤ σ2
MDEF (pi, r, α)/(kσσMDEF (pi, r, α))2 = 1/k2

σ �

This is a relatively loose bound, but it holds regardless of
the distribution. For known distributions, the actual bounds
are tighter; for instance, if the neighborhood sizes follow a
normal distribution andkσ = 3, much less than 1% of the
points should deviate by that much (as opposed to≈ 10%
suggested by the above bound).

3.3 LOCI plot

In this section we introduce theLOCI plot. This is a
powerful tool, no matter what outlier detection scheme is
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Figure 3. LOCI plots from an actual dataset—see also Section 6.

employed. It can be constructed instantly from the com-
puted “summaries” for any pointpi the user desires and it
gives a wealth of information about the vicinity ofpi: why
it is an outlier with regard to its vicinity, as well as informa-
tion about nearby clusters and micro-clusters, their diame-
ters and inter-cluster distances.

Definition 3 (LOCI plot) For any objectpi, the plot of
n(pi, αr) and n̂(pi, r, α) with n̂(pi, r, α) ± 3σn̂(pi, r, α),
versusr (for a range of radii of interest), is called itsLOCI
plot.

We give detailed examples from actual datasets in Sec-
tion 6. Here we briefly introduce the main features (see also
Figure 3). The solid line showŝn and the dashed line isn is
all plots.
• Consider the point in the micro-cluster (atx = 18, y =

20). The n value looks similar up to the distance
(roughly 30) we encounter the large cluster. Earlier,
the increase in deviation (in the range of≈ 10–20) in-
dicates the presence of a (small) cluster. Half the width
(sinceα = 1/2, and the deviation here is affected by
the counting radius) of this range (about10/2 = 5) is
the radius of this cluster.

• A similar increase in deviation happens at radius 30,
along with an increase in̂n. Also, note thatn shows a
similar jump atα−1× 30 = 60 (this time it is the sam-
pling radius that matters). Thus,≈ 30 is the distance
to the next (larger) cluster.

• In the cluster point (atx = 64, y = 19) we see from the
middle LOCI plot that the two counts (n̂ andσn̂) are
similar, as expected. The increase in deviation, how-
ever, provides the information described above for the
first increase (here the counting radius matters again,
so we should multiply the distances byα).

• The general magnitude of the deviation always indi-
cates how “fuzzy” (i.e., spread-out and inconsistent) a
cluster is.

• For the outstanding outlier point (atx = 18, y = 30),
we see the deviation increase along with the pair of
jumps inn̂ andn (the distance between the jumps de-
termined byα) twice, as we would expect: the first

time when we encounter the micro-cluster and the sec-
ond time when we encounter the large cluster.

4 The LOCI algorithm

In this section, we describe our algorithm for detecting
outliers using our LOCI method. This algorithm computes
exact MDEF andσMDEF values for all objects, and then
reports an outlier whenever MDEF is more than three times
larger thanσMDEF for the same radius. Thus the key to
a fast algorithm is an efficient computation of MDEF and
σMDEF values.

We can considerably reduce the computation time for
MDEF andσMDEF values by exploiting the following prop-
erties:

Observation 1 For each objectpi and eachα, n(pi, r),
n̂(pi, r, α), and thusMDEF (pi, r, α) andσMDEF (pi, r, α)
are all piecewise constant functions ofr. In particular,
n(pi, r) andn(p, αr) for all p in ther-neighborhood ofpi

can change only when the increase ofr causes a new point
to be added to either ther-neighborhood ofpi or the αr-
neighborhood of any of thep.

This leads to the following definition, whereN is the

// Pre-processing
Foreachpi ∈ P:

Perform a range-search
for Ni = {p ∈ P | d(pi, p) ≤ rmax}

FromNi, construct a sorted listDi

of the critical andα-critical distances ofpi

// Post-processing
Foreachpi ∈ P:

For each radiir ∈ Di (ascending):
Updaten(pi, αr) andn̂(pi, r, α)
Fromn andn̂, compute
MDEF (pi, r, α) andσMDEF (pi, r, α)

If MDEF (pi, r, α) > 3σMDEF (pi, r, α),
flagpi

Figure 4. The exact LOCI algorithm.

6



number of objects andNN (pi,m) is the m-th nearest
neighbor ofpi.

Definition 4 (Critical Distance) For 1 ≤ m ≤ N ,
we call d(NN (pi,m), pi) a critical distanceof pi and
d(NN (pi,m), pi)/α anα-critical distanceof pi.

By observation 1, we need only consider radii that are
critical or α-critical. Figure 4 shows our LOCI algorithm.
The complexity of our LOCI algorithm is roughly compara-
ble to that of the best previous density-based approach [8].
Due to space restrictions, further details of this algorithm
are included in the full version of the paper.

5 The aLOCI algorithm

In this section we present our fast, approximate LOCI
algorithm (aLOCI). Although algorithms exist for approxi-
mate range queries and nearest neighbor search [3, 7, 11],
applying them directly to previous outlier detection algo-
rithms (or the LOCI algorithm; see Figure 4) would not
eliminate the high cost of iterating over each object in
the (sampling) neighborhood of eachpi. Yet with pre-
vious approaches,failing to iterate over each such object
means the approach cannot effectively overcome the multi-
granularity problem (Figure 1(b)). In contrast, our MDEF-
based approach is well-suited to fast approximations that
avoid these costly iterations, yet are able to overcome the
multi-granularity problem. This is because our approach
essentially requires only counts at various scales.

5.1 Definitions and observations

Our aLOCI algorithm is based on a series of observations
and techniques outlined in this section.

To quickly estimate the average number ofαr-neighbors
over all points in anr-neighborhood of an objectpi ∈ P
(from now on, we assumeL∞ distances), we can use the
following approach. Consider a grid of cells with side
2αr over the setP. Perform abox countof the grid: For
each cellCj in the grid, compute the count,cj , of the
number of objects in the cell. Each object inCj hascj

neighbors in the cell (counting itself), so the total num-
ber of neighbors over all objects inCj is c2

j . Denote by
C(pi, r, α) the set of all cells in the grid such that the en-
tire cell is within distancer of pi. We useC(pi, r, α) as
an approximation for ther-neighborhood ofpi. Summing
over the entirer-neighborhood, we getS2(pi, r, α), where
Sq(pi, r, α) ≡

∑
Cj∈C(pi,r,α) cq

j . The total number of ob-
jects is simply the sum of all box counts, i.e.,S1(pi, r, α).

Lemma 2 (Approximate average neighbor count)Let
α = 2−l for some positive integerl. The average neighbor
count overpi’s sampling neighborhood is approximately:

n̂(pi, r, α) =
S2(pi, r, α)
S1(pi, r, α)

Proof Follows from the above observations; for details,
see [22]. �

However, we need to obtain information at several
scales. We can efficiently store cell counts in ak-
dimensional quad-tree: The first grid consists of a single
cell, namely the bounding box ofP. We then recursively
subdivide each cell of side2αr into 2k subcells, each with
radiusαr, until we reach the scale we desire (specified ei-
ther in terms of its side length or cell count). We keep only
pointers to the non-empty child subcells in a hash table (typ-
ically, for large dimensionsk, most of the2k children are
empty, so this saves considerable space over using an ar-
ray). For our purposes, we only need to store thecj values
(one number per non-empty cell), and not the objects them-
selves.

The recursive subdivision of cells dictates the choice2 of
α = 2−l for some positive integerl, since we essentially
discretize the range of radii at powers of two.

In addition to approximatinĝn, our method requires an
estimation ofσn̂. The key to our fast approximation ofσn̂

is captured in the following lemma:

Lemma 3 (Approximate std. deviation of neighbor count)
Let α = 2−l for some positive integerl. The standard
deviation of the neighbor count is approximately:

σn̂(pi, r, α) =

√
S3(pi, r, α)
S1(pi, r, α)

− S2
2(pi, r, α)

S2
1(pi, r, α)

Proof We use the estimated meann̂(pi, r, α) from Lemma 2
and again follow the same reasoning, approximating actual
counts with box counts. More details are in the full version
of the paper. �

From the above discussion, we see that box counting
within quad trees can be used to quickly estimate the MDEF
values andσMDEF values needed for our LOCI approach.
However, in practice, there are several important issues that
need to be resolved to achieve accurate results, which we
address next.

Discretization: A quad-tree decomposition of the fea-
ture space inherently implies that we can sample the ac-
tual averages and deviations at radii that are proportional
to powers of two. In essence, we discretize all quantities
involved by sampling them at intervals of size2l. However,
perhaps surprisingly, this discretization does not have a sig-
nificant impact on our ability to detect outliers. Consider a
relatively isolated objectpi and a distant cloud of objects.
Recall that we compute MDEF values for an object starting
with the smallest radius for which its sampling neighbor-
hood hasnmin = 20 objects, in order to make the (exact)
LOCI algorithm more robust and self-adapting to the local

2In principle, we can choose any integer powerα = c−l by subdi-
viding each cell intock subcells. However, this makes no difference in
practice.

7



// Initialization
Select set of shiftsS = {s0, s1, . . . , sg}, wheres0 = 0
lα = − lg(α)
Foreachsi ∈ S:

Initialize quadtreeQ(si)
// Pre-processing stage
Foreachpi ∈ P:

Foreachsi ∈ S:
Insertpi in Q(si)

// Post-processing stage
Foreachpi ∈ P:

Foreach levell:
Select cellCi in Q(sa) with side

di = RP/2l and center closest topi

Select cellCj in Q(sb) with side
dj = RP/2l−lα and center closest to center ofCi

EstimateMDEF (pi,
dj

2
, α) andσMDEF (pi,

dj

2
, α)

If MDEF (pi,
dj

2
, α) > 3σMDEF (pi,

dj

2
, α), flagpi

Figure 5. The approximate aLOCI algorithm.

density. Similarly, for the aLOCI algorithm, we start with
the smallest discretized radius for which its sampling neigh-
borhood has at least 20 neighbors. Considering our point
pi, observe that at large enough radius, both its sampling
and counting neighborhoods will contain many objects from
the cloud, and these points will have similar neighborhood
counts topi, resulting in an MDEF near zero (i.e., no outlier
detection). However, at some previous scale, the sampling
neighborhood will contain part of the cloud but the count-
ing neighborhood will not, resulting in an MDEF near one,
as desired for outlier detection. Note that, in order for this
to work, it is crucial that (a) we use anα ≤ 2−l, and (b)
we performnmin neighborhood thresholding based on the
sampling neighborhood and not the counting neighborhood.

Locality: Ideally, we would like to have the quad-tree
grids contain each object of the dataset at the exact center
of cells. This is not possible, unless we construct one quad-
tree per object, which is ridiculously expensive. However,
a single grid may provide a close enough approximation for
many objects in the data set. Furthermore, outstanding out-
liers are typically detected no matter what the grid position-
ing is: the further an object is from its neighbors, the more
“leeway” we have to be off-center (by up to at least half the
distance to its closest neighbor!).

In order to further improve accuracy for less obvious out-
liers, we utilize several grids. In practice, the number of
gridsg does not depend on the feature space dimensionk,
but rather on the distribution of objects (or, theintrinsic di-
mensionality [9, 6] of the data set, which is typically much
smaller thank). Thus, in practice, we can achieve good re-
sults with a small number of grids.

To summarize, the user may selectg depending on the

desired accuracy vs. speed. Outstanding outliers are typi-
cally caught regardless of grid alignment. Performance on
less obvious outliers can be significantly improved using a
small numberg − 1 of extra grids.

Grid alignments: Each grid is constructed by shifting
the quad-tree bounding box bys (a k-dimensional vec-
tor). At each grid levell (corresponding to cell diameter
dl = RP/2l), the shift effectively “wraps around,” i.e., each
cell is effectively shifted bys mod dl, where mod is ap-
plied element-wise and should be interpreted loosely (as the
fractional part of the division). Therefore, with a few shifts
(each portion of significant digits essentially affecting dif-
ferent levels), we can achieve good results throughout all
levels. In particular, we recommend using shifts obtained
by selecting each coordinate uniformly at random from its
domain.

Grid selection: For any objectpi in question, which
cells and from which grids do we select to (approximately)
cover the counting and sampling neighborhoods? For the
counting neighborhood ofpi, we select a cellCi (at the ap-
propriate levell) that containspi as close as possible to its
center; this can be done inO(kg) time.

For the sampling neighborhood, a naive choice might be
to search all cells in thesamegrid that are adjacent toCi.
However, the number of such cells isO(2k), which leads to
prohibitively high computational cost for high dimensional
data. Unfortunately, if we insist on this choice, this cost
cannot be avoided; we will either have to pay it when build-
ing the quad-tree or when searching it.

Instead, we select a cellCj of diameterdl/α (where
dl = RP/2l) in some grid (possibly a different one), such
that the center ofCj lies as close as possible to the center
of Ci. The reason we pickCj based on its distance from
the center ofCi andnot from pi is that we want the maxi-
mum possible volume overlap ofCi andCj . Put differently,
we have already picked an approximation for the count-
ing neighborhood ofpi (however good or bad) and next we
want the best approximation of the sampling neighborhood,
giventhe choice ofCi. If we used the distance frompi we
might end up with the latter approximation being “incom-
patible” with the former. Thus, this choice is the one that
gives the best results. The final step is to estimate MDEF
andσMDEF , by performing a box-count on the sub-cells of
Cj .

Deviation estimation: A final important detail has to do
with successfully estimatingσMDEF . In certain situations
(typically, in either very small or very large scales), many
of the sub-cells ofCj may be empty. If we do a straight
box-count on these, we may under-estimate the deviation
and erroneously flag objects as outliers.

This problem is essentially solved by giving more weight
to the counting neighborhood ofpi: in the set of box counts
used forSq(pi, r, α), we also includeci w times (w = 2
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Dataset Description

Dens Two 200-point clusters of different densities and one
outstanding outlier.

Micro A micro-cluster with 9 points, a large, 600-point
cluster (same density) and one outstanding outlier.

Sclust A Gaussian cluster with 500 points.
Multimix A 250-point Gaussian cluster, two uniform clusters

(200 and 400 points), three outstanding outliers and
3 points along a line from the sparse uniform cluster.

NBA Games, points per game, rebounds per game, assists
per game (1991–92 season).

Table 2. Description of synthetic and real data
sets.

works well in all the datasets we have tried), besides the
counts for the sub-cells ofCj .

Lemma 4 (Deviation smoothing) If we add a new valuea
to set ofN values with averagem and variances2, then the
following hold about the new averageµ and varianceσ2:

σ2 > s2 ⇔
|a−m|

s
>

N + w

N
and lim

N→∞

σ2

s2
= 1

wherew is the weight ofa (i.e., it is countedw times).

Proof Follows from the definitions for mean and standard
deviation; more details are in the full paper. �

From Lemma 4, if the number of non-empty sub-cells is
large, a smallw weighting has small effect. For outstanding
outliers (i.e., large|a − m|/s), this weighting does not af-
fect the the estimate ofσMDEF significantly. Thus, we may
only err on the conservative side for a few outliers, while
avoiding several “false alarms” due to underestimation of
σMDEF .

5.2 The approximation algorithm

The aLOCI algorithm, based on the discussion in the pre-
vious section, is illustrated in Figure 5. The quad-tree con-
struction stage takes timeO(NLkg), whereL is the total
number of levels (or scales), i.e.,O(lg(rmax/rmin)). The
scoring and flagging stage takes an additionalO(NL(kg +
2k) time (recall thatα is a constant). As noted above, the
number of gridsg depends on the intrinsic dimensionality
of P. We found10 ≤ g ≤ 30 sufficient in all our exper-
iments. Similarly,L can be viewed as fixed for most data
sets. Finally, the2k term is a pessimistic bound because of
the sparseness in the box counts. As shown in Section 6,
in practice the algorithm scales linearly with data size and
with dimensionality. Moreover, even in the worst case, it
is asymptotically significantly faster than the best previous
density-based approach.

6 Experimental evaluation

In this section we discuss results from applying our
method to both synthetic and real datasets (described in Ta-
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Figure 6. Time versus data set size and di-
mension (log-log scales).

ble 2). We also briefly discuss actual performance measure-
ments (wall-clock times).

6.1 Complexity and performance

Our prototype system is implemented in Python, with
Numerical Python for fast matrix manipulation and certain
critical components (quad-trees and distance matrix compu-
tation) implemented in C as language extensions (achieving
a 5× to 15× speedup). We are currently re-implementing
the system in C and preliminary results show at least a10×
overall speedup. Figure 6 shows the wall clock times on a
synthetic dataset, versus data set size and dimension. All
experiments were run on a PII 350MHz with 384Mb RAM.
The graphs clearly show that aLOCI scales linearly with
dataset size as well as dimension, as expected. In should
be noted that the dataset chosen (a multi-dimensional Gaus-
sian cluster) is actually much denser throughout than a real
dataset would be. Thus, the time vs. dimension results are
on the conservative side (lα = 4, or α = 1/16 in our exper-
iments).

6.2 Synthetic data

We illustrate the intuition behind LOCI using a variety
of synthetic datasets, demonstrate that LOCI and aLOCI
provide sound and useful results and we discuss how to in-
terpret LOCI plots “in action.” The results from LOF are
shown in Figure 7. LOF is the current state of the art in
outlier detection. However, it provides no hints about how
high an outlier score is high enough. A typical use of select-
ing a range of interest and examining the top-N scores will
either erroneously flag some points (N too large) or fail to
capture others (N too small). LOCI provides an automatic
way of determining outliers within the range of interest and
captures outliers correctly.

Figure 8 shows the results from LOCI on the entire range
of scales, from 20 toRP on the top row. On the bottom
row, we show the outliers at a subset of that range (20 to 40
neighbors around each point). The latter is much faster to
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Figure 7. Synthetic data: LOF ( MinPts = 10 to 30, top 10).
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Figure 8. Synthetic, LOCI. Top row: n̂ = 20 to full radius, α = 0.5. Bottom row: n̂ = 20 to 40 except
micro where n̂ = 200 to 230, α = 0.5.

compute, even exactly, and still detects the most significant
outliers. Finally, Figure 9 shows the aLOCI results. How-
ever, LOCI does not stop there and can provide information
aboutwhyeach point is an outlier and about its vicinity (see
Figure 11 and Figure 10).

Dens dataset. LOCI captures the outstanding outlier.
By examining the LOCI plots we can get much more infor-
mation. In the leftmost column of Figure 10 it is clear that
the outstanding outlier is indeed significantly different from
its neighbors. Furthermore, the radius where the deviation
first increases (≈ 5) and the associated jumps in counts cor-
respond to the distance (≈ 5/2) to the first cluster. The
deviation increase (without change in counts) in the range
of 50–80 corresponds to the diameter (≈ 30) of the second
cluster.

The second column in Figure 10 shows a point in the
micro-cluster, which behaves very similarly to those in
its sampling neighborhood. Once again, the deviation in-
creases correspond to the diameters of the two clusters.

Finally, the two rightmost columns of Figure 10 show the
LOCI plots for two points in the large cluster, one of them
on its fringe. From the rightmost column it is clear that the
fringe point is tagged as an outlier at a large radius and by
a small margin. Also, the width of the radius range with
increased deviation corresponds to the radius of the large

cluster.
“Drill-down.” It is important to note that the aLOCI

plots (bottom row) already provide much of the information
contained in the LOCI plots (top row), such as the scale
(or radius range) at which each point is an outlier.If users
desire detailed information about a particular range of radii,
they can select a few points flagged by aLOCI and obtain the
LOCI plots. Such a “drill-down” operation is common in
decision support systems. Thanks to the accuracy of aLOCI,
the user can immediately focus on just a few points. Exact
computation of the LOCI plots for a handful of points is fast
(in the worst case—i.e., full range of radii—it isO(kN)
with a very small hidden constant; typical response time is
about one to two minutes on real datasets).

Micro dataset. In themicro dataset, LOCI automat-
ically capturesall 14 points in the micro-cluster, as well
as the outstanding outlier. At a wider range of radii, some
points on the fringe of the large cluster are also flagged.
The LOCI and aLOCI plots are in Figure 3 and Figure 11,
respectively (see Section 3.3 for discussion).

Sclust and Multimix datasets. We discuss these
briefly, due to space constraints (LOCI plots are similar to
those already discussed, or combinations thereof). In the
sclust dataset, as expected, for small radii we do not de-
tect any outliers, whereas for large radii we capture some
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Figure 9. Synthetic: aLOCI (10 grids, 5 levels, lα = 4, except micro , where lα = 3).

large deviants. Finally, in themultimix dataset, LOCI
captures the isolated outliers, some of the “suspicious” ones
along the line extending from the bottom uniform cluster
and large deviants from the Gaussian cluster.

6.3 Real data

In this section we demonstrate how the above rules ap-
ply in a real dataset (see Table 2). In the previous section we
discussed the shortcomings of other methods that provide a
single number as an “outlier-ness” score. Due to space con-
straints, we only show LOCI and aLOCI results and discuss
the LOCI plots from one real dataset (more results are in the
full version of the paper).

NBAdataset.Results from LOCI and aLOCI are shown
in Figure 12. Figure 13 shows the LOCI plots. The over-
all deviation indicates that the points form a large, “fuzzy”
cluster, throughout all scales. Stockton is clearly an outlier,
since he is far different from all other players, with respect
to anystatistic. Jordan is an interesting case; although he is
the top-scorer, there are several other players whose over-
all performance is close (in fact, Jordan does not stand out
with respect to any of the other statistics). Corbin is one of
the players which aLOCI misses. In Figure 12 he does not
really stand out. In fact, his situation is similar to that of the
fringe points in theDens dataset!
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Figure 10. Dens, LOCI plots.

7 Conclusions

In summary, the main contributions of LOCI are:(1)
Like the state of the art, it can detect outliers and groups of
outliers (or, micro-clusters). It also includes several of the
previous methods (or slight variants thereof) as a “special
case.” (2) Going beyond any previous method, it proposes
an automatic, data-dictated cut-off to determine whether a
point is an outlier—in contrast, previous methods let the
users decide, providing them with no hints as to what cut-
off is suitable for each dataset.(3) Our method success-
fully deals with both local density and multiple granular-
ity. (4) Instead of just an “outlier-ness” score, it provides
a whole plot for each point that gives a wealth of infor-
mation. (5) Our exact LOCI method can be computed as
quickly as previous methods.(6) Moreover, LOCI leads to a
very fast, practically linear approximate algorithm,aLOCI,
which gives accurate results. To the best of our knowl-
edge, this is the first time approximation techniques have
been proposed for outlier detection.(7) Extensive experi-
ments on synthetic and real data show that LOCI and aLOCI
can automatically detect outliers and micro-clusters, with-
out user-required cut-offs, and that they quickly spot out-
liers, expected and unexpected.
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