
MultiVis: Content-based Social Network Exploration Through

Multi-way Visual Analysis

Jimeng Sun, Spiros Papadimitriou, Ching-Yung Lin, Nan Cao, Shixia Liu, Weihong Qian

IBM Research

Abstract

With the explosion of social media, scalability becomes
a key challenge. There are two main aspects of the
problems that arise: 1) data volume: how to manage
and analyze huge datasets to efficiently extract patterns,
2) data understanding: how to facilitate understanding
of the patterns by users?

To address both aspects of the scalability challenge,
we present a hybrid approach that leverages two comple-
mentary disciplines, data mining and information visu-
alization. In particular, we propose 1) an analytic data
model for content-based networks using tensors; 2) an
efficient high-order clustering framework for analyzing
the data; 3) a scalable context-sensitive graph visualiza-
tion to present the clusters.

We evaluate the proposed methods using both syn-
thetic and real datasets. In terms of computational effi-
ciency, the proposed methods are an order of magnitude
faster compared to the baseline. In terms of effective-
ness, we present several case studies of real corporate
social networks.

1 Introduction

With the emergence and rapid proliferation of social
media, such as instant messaging (e.g., IRC, AIM,
MSN, Jabber, Skype), sharing sites (e.g., Flickr, Pi-
cassa, YouTube, Plaxo), blogs (e.g., Blogger, Word-
Press, LiveJournal), wikis (e.g., Wikipedia, PBWiki),
microblogs (e.g., Twitter, Jaiku), social networks (e.g.,
MySpace, Facebook, Ning), to mention a few, there is
little doubt that networks which arise from all sorts of
digital and social media, combining content with people
and context, are becoming prevalent and here to stay.
Therefore, there is a clear need for methods and tech-
niques to analyze, navigate and search them. Such so-
cial networks arise from pairwise communications, such
as email, instant messaging (IM) or mobile text messag-
ing (SMS).

Motivating application The SmallBlue project
[1, 14] within IBM (also part of the Lotus Atlas software
suite) aims to analyze the social network within a

corporation, thereby answering the important questions
of “who are experts?” and “how to reach them?”. It
relies on a small client application that users consent
to install on their personal machines, which locally
analyzes their email outbox and their outgoing IM
chat transcripts. As of this writing, the number of
IBMers that have installed the software is close to 6,000,
and growing fast due to network effects (about 3,000
new subscribers since the beginning of the year). The
number of distinct recipients is approaching to 330,000
(i.e., close to the entire workforce of IBM). The number
of emails and chat transcripts is over eight million. The
number of keyword stems in the raw dataset, across all
languages, approaches eight million.

Problem motivation and statement Typical
approaches to analyzing such networks focus on either
the content (e.g., list of words or terms) or on the pair-
wise associations, in isolation. On one hand, content-
based analysis such as latent semantic indexing [29] an-
alyzes the relationship between documents and terms
by identifying hidden concepts related to documents
and terms. On the other hand, social network analysis,
such as graph partitioning, tries to identify communi-
ties among people based only on links among individu-
als. In the past, many techniques considered these two
aspects separately. In this case, ad-hoc post-processing
is necessary to glue the results from each aspect (con-
tent and network), which creates both performance and
quality problems. The main reason is that, in many tra-
ditional settings, content is associated with nodes in the
graph (e.g., words in a web page) rather than with edges
(e.g., the words used in all emails between two specific
individuals). Several approaches have appeared in the
research literature (e.g., [29, 23, 11, 28]) to deal with
graphs where additional information may be attached
to individual nodes. However, the nature of the data
we consider is different. Perhaps the only widely avail-
able public corpus which allows simultaneous analysis
of both content and network aspects is the Enron email
dataset.

Our goal is to analyze, summarize, navigate and

1064 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

search this growing corpus of valuable information. For
example, a business analyst may wish to answer the
following questions:

• What are the key topics or areas of expertise within
the company?

• Which are the key groups of experts in each of these
areas?

• How to navigate through these expertise groups to
find relevant experts?

and so on. Our goal is to precisely provide scalable tools
that can analyze the corpus and help answer questions
such as the ones above.

When dealing with a network with hundreds of
thousands of people and millions of terms, scalability
is a key challenge. This involves both

1. Computational complexity involved in processing
the data and extracting significant patterns (such
as those mentioned above), and

2. Information complexity involved in presenting the
huge amount of data in a way that is easy for users
to navigate and comprehend.

These two aspects are fundamentally intertwined. We
thus introduce a comprehensive data modeling, mining
and visualization workflow to address these challenges.

Our contributions More specifically, the main
contributions of this paper are:

1. We introduce a method to simultaneously model
both the network and content aspects as tensors.

2. We present robust and scalable single-mode and
cross-mode clustering methods using tensor dimen-
sionality reduction and biased sampling.

3. We bridge these clustering results through novel
hierarchical context-specific visualizations.

The rest of the paper is organized as follows: Section 2
overviews the necessary background on tensor algebra.
Section 3 introduces our tensor-based data model, Sec-
tion 4 formalizes the problem and Section 5 presents our
proposed framework for content-based network analy-
sis. Section 6 gives an overview of our visualization
framework and describes case studies on real datasets.
Section 7 presents experimental results that validate
the computational efficiency of our methodology. Fi-
nally, Section 8 discusses related work and Section 9
concludes.

2 Background

In this section, we introduce the notation and define the
key tensor operations required in this paper.

2.1 Tensor

Definition 2.1. (Tensor) A tensor is a multi-way
array. The order of a tensor is the number of modes
or ways. Within each mode, there are multiple dimen-
sions. The dimensionality of a mode is the number of
dimensions in that mode.

For example, a tensor X ∈ R6×7×8 has 3 modes with
dimensionalities of 6, 7, and 8, respectively.

Higher-order (N -way with N ≥ 3) tensors are de-
noted by boldface Euler script letters, e.g., X. Matrices
(tensors of order two) are denoted by boldface capital
letters, e.g., A; vectors (tensors of order one) are de-
noted by boldface lowercase letters, e.g., a; and scalars
are denoted by lowercase letters, e.g., a. The ith entry
of a vector a is denoted by ai, element (i, j) of a matrix
A by aij , and element (i, j, k) element of a third-order
tensor X by xijk. Indices typically range from 1 to their
capital version, e.g., i = 1, . . . , I. The n-th element
in an ordered collection is denoted by a superscript in
parentheses. For example, v(n) denotes the n-th vector
in a collection. Therefore, v

(n)
i denotes the ith element

on the n-th vector v(n). Likewise, A(n) denotes the n-th
matrix in a collection. Also, a(n)

:r and a(n)
r: denote the

r-th column and row, respectively, of the matrix A(n).
Finally, we denote the entire ordered collection of all
A(n) matrices, for all n, by omitting the parenthesized
superscript and using braces, i.e., {A}.

Definition 2.2. (Tensor norm) The norm of an N -
way tensor X ∈ RI1×···×IM is

‖X‖ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IM∑

iM=1

x2
i1i2···iM

.

2.2 Basic Tensor Operations

Definition 2.3. (Matricization) Matricization,
also known as unfolding or flattening, is the process
of reordering the elements of an N -way array into a
matrix.

The mode-n matricization of a tensor X ∈
RI1×···×IM is denoted by X(n) and arranges the mode-n
fibers to be the columns of the matrix X(n). Specifically,
tensor element (i1, i2, . . . , iN) maps to matrix element
(in, j) where

j = 1 +
N∑

k=1
k 6=n

(ik − 1)Jk, Jk =
k−1∏
m=1
m6=n

Im.

Similarly, we can define the vectorization operation,
which linearizes the tensor into a vector.

1065 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Definition 2.4. (Mode-n product) The mode-n
matrix product of a tensor X ∈ RI1×···×IM with a
matrix U ∈ RJ×In is denoted by X×n U and is of size
I1 × · · · × In−1 × J × In+1 × · · · × IM . Element-wise,
we have

(X×n U)i1···in−1j in+1···iM
=

In∑
in=1

xi1i2···iM
ujin

.

The mode-n product transforms X to a new tensor
X×n U by applying the linear transformation described
by the matrix U to each of the mode-n fibers of X.
From [5], we adopt the following shorthand notation for
multiplication in every mode:

X× {A} ≡ X×1 A(1) ×2 A(2) · · · ×M A(M).

It is also useful to introduce notation for multiplication
in every mode but one [5]:

X×−n {A} ≡
X×1 A(1) · · · ×n−1 A(n−1) ×n+1 A(n+1) · · · ×M A(M).

2.3 Tensor Decompositions Tensor decomposi-
tions factorize/approximate a (large) input tensor into
a smaller tensor associated a set of factor matrices (one
for each mode). Many tensor decompositions have been
proposed (see [24] for a detailed survey), among which
CANDECOMP/PARAFAC (CP) [8, 16] and the Tucker
decomposition [35] are most popular. Here we focus on
the Tucker decomposition.

Definition 2.5. (Tucker Decomposition) Let X

be a tensor of size I1 × · · · × IM . A Tucker decom-
position of X yields a core tensor G of specified size
R1×· · ·×RM and factor matrices U(n) of size In ×Rn

for n = 1, . . . , N such that

(2.1) X ≈ G× {U}.

The Tucker decomposition approximates a tensor as
a smaller core tensor (i.e., a compressed version of
the original tensor) times the product of matrices that
span appropriate subspaces in each mode. The ap-
proximation tries to minimize the total squared error
‖X−G×{U}‖. Typically, the factor matrices U(n) are
assumed to be orthonormal.

3 Data Model

In this section, we formally introduce the data
model. The raw information of content-based so-
cial networks are typically obtained through com-
munication flows, such as emails in the form of
〈sender, recipient, message〉. We model such data as
content-based network tensors, defined as the follows:

Sym. Definition
X I1 × · · · × IM data tensor
X(d) mode-d matricization
G R1 × · · · ×RM core tensor
U(d) Id ×Rd mode-d factor matrix
{U} all factor matrices
a:r(ar:) r-th column (row) of matrix A
C(d) dimension clustering (partitioning) on

mode-d
Kd number of clusters along mode-d
C(d)

i the i-th cluster along mode d, 1 ≤ i ≤
Kd

I(d) dimension index set along mode d
{I} collection of dimension sets for all

modes
X({I}) sub-tensor induced by {I} ≡

(I(1), · · · , I(M))

Table 1: Definitions of symbols

Definition 3.1. (Content-based network tensor)
A content-based network tensor is a tensor
X ∈ RI1×···×IN×J1×···×JM with two sets of modes:
N network modes of dimensionality I1, . . . , IN and
M content modes of dimensionality J1, . . . , JM . The
element xi1i2···iN j1j2···jM

in X is the joint weight of the
network dimensions i1i2 · · · iN and content dimensions
j1j2 · · · jM .

For example, if we represent the message body of an
email using the well-established vector space model (i.e.,
bag-of-words approach), then a data corpus consisting
of emails between many users can be modeled as a
third order tensor of sender, recipient, and keyword
modes. Here sender and recipient are the network
modes and keyword is the content mode, as shown in
Figure 1. The (i1,i2,j) element of the tensor is a variable
that indicates whether person i1 sent an email to
person i2 which contained the keyword j. This variable
may be weighted (e.g., similar to the TFIDF score in
information retrieval) or simply a binary indicator. Our
methods can deal with both; unless otherwise noted, we
use the latter.

For storing the tensors, we use the coordinate
format as proposed in [6]. By storing only the non-zero
entries along with their indices, we need space for just
(M +1)P elements, where P is the number of non-zeros
and M is the number of modes.

4 Problem Overview

After introducing the data model, we now present the
problems addressed in the paper. The goals are

1066 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 1: A content-based network tensor with two
network modes (sender and recipient) and one content
modes (keyword).

• Content-based network analysis: identify pat-
terns from large content-based social networks;

• Context-sensitive graph visualization:
present the patterns in the network and content
modes for intuitive data exploration.

These two parts are naturally complementary to each
other, as summarized in Figure 5 and further explained
in Section 6. In particular, the patterns from network
analysis provide a core structure for hierarchical and
context-sensitive graph visualization. Likewise, the
graph visualization helps better convey the patterns to
users through an intuitive presentation.

4.1 Content-based Network Analysis We ana-
lyze the content-based network tensors using a two-level
process. In this section we provide an overview of the
overall process, and introduce some necessary notation.
Section 5 explains our methodology in detail.

First, given a content-based network tensor, how to
analyze the content and network modes in an efficient
and robust manner? In this case, we need to model each
mode of the tensor. In this paper, we focus on clustering
applications.

Second, once the clusters on all modes are identified,
how to efficiently identify the correlations across differ-
ent modes? In this case, we need to correlate those clus-
ters for cross-mode patterns. For example, in the email
tensor, we want to associate groups of people (commu-
nities) and groups of keywords (concepts) to find topic-
specific community patterns.

Single-Mode clustering The first, crucial step
in discovering clusters (i.e., groups of dimensions) in
each mode is to apply the Tucker decomposition on the
original network tensor X. As explained in Section 2.3,
this serves a dual purpose: (i) similar to SVD, it
discovers the appropriate coordinates for each mode,
that capture the main correlations present in the data,
allowing us to examine each mode independently of the

others, and (ii) it reduces the number of dimensions
we have to deal with, thus significantly speeding up
pairwise similarity computations, which are necessary
for clustering. Next, we apply a clustering algorithm on
each of the factors U(d).

The end result is a set of clusters (groups of
dimensions) on each mode of the tensor.

Definition 4.1. (Dimension cluster, clustering)

A mode-d dimension cluster C(d)
i is a subset of all di-

mensions in mode-d and a mode-d dimension clustering
C(d) is a partition of all dimensions of mode-d into Kd

dimension clusters.

Formally, C(d) is a label vector that represents a map-
ping from each dimension id, for 1 ≤ id ≤ Id, to
a cluster label C(d)(id) where 1 ≤ C(d)(id) ≤ Kd.
The set of all dimensions assigned to the i-th label is
C(d)

i ≡ {id | C(d)(id) = i}. The number of clusters in
C(d) is denoted by Kd. The cluster sizes, i.e., number
of dimensions in C(d)

i , for 1 ≤ i ≤ Kd, are denoted by
|C(d)

i |.
Cross-mode clustering First, we introduce nota-

tion to describe sub-tensors, which are formed by select-
ing a subset of dimensions along each mode.

Definition 4.2. (Dimension set and sub-tensor)
A dimension index set is I(d) is a subset of all indices
id, for 1 ≤ id ≤ Id, along mode d of tensor X. Its
cardinality is denoted by |I(d)|. We denote an ordered
collection of index sets, one for each mode, by {I} ≡
(I(1), . . . , I(d), . . . , I(M)). Given such a collection, the
sub-tensor X(I(1), . . . , I(d), . . . , I(M)) ≡ X({I}) is the
|I(1)| × · · · × |I(M)| tensor formed by selecting the
corresponding subsets of dimensions along each mode
d, for 1 ≤ d ≤ M .

Note that a dimension cluster C(d)
i as defined above

is an dimension index set. A combination of different
dimension clusters, one from each mode, defines a cross-
mode cluster and its associated sub-tensor.

Definition 4.3. (Cross-mode cluster) A set of di-
mension clusters {C} = (C(1)

i1
, . . . , C(M)

iM
) defines a cross-

mode cluster and its associated sub-tensor X({C}).
The shaded area in Figure 1 is a sub-tensor induced by
dimension clusters C(1)

1 , C(2)
1 , and C(3)

1 .

4.2 Context-sensitive Graph Visualization Af-
ter obtaining all the patterns, how to visualize and ex-
plore social networks in the context of different network
and content clusters? We argue this is as important
as the network analysis, since the intuitive and scalable
presentation of the patterns is a key to user understand-
ing.

1067 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

5 Content-based Network Analysis

We now present the network analysis on content-based
social network tensors. First, we introduce a high-
order dimensionality reduction process using tensor
decomposion. Second, we leverage the low-dimensional
representation along each mode for clustering. Third,
we utilize input tensor to find dense connections across
clusters from different modes. Figure 2 shows the overall
process using the email tensor.

I x J x K

U(1)

I x R

U(2)

J x S

R x S x T

sender

re
ci
pi
e
nt

…

…

…

recipient
clusters

sender
clusters

term
clusters

Data tensor
Tensor

decomposition

Single-mode
clusters

Cross-mode
clusters

…

C(3)
1

C(3)
2

C(3)
3

C(2)
1

C(2)
2

C(2)
3

C(1)
1

C(1)
2

C(1)
3

C(3)
1C(1)

3

C(3)
3C(2)

3

C(2)
1

C(1)
2

C(2)
2 C(3)

2C(1)
1

Figure 2: Network analysis through tensor decomposi-
tion

5.1 Dimensionality reduction through Tensor
decomposition First, we present how to use tensor
decomposition as a dimensionality reduction process.
Second, we address how to improve the scalability
through biased sampling.

One simple way of analyzing the i-th mode of
tensor X ∈ RI1×···×IN is to matricize X along
the i-th mode, i.e., construct the matrix X(i) ∈
RIi×(I1×···×Ii−1×Ii+1×···×IN). Then, we model the row
vectors of X(i). As shown in the example of Figure 3,the
matricization of X ∈ RI×J×3 along the recipient mode
gives us I recipient vectors of size J × 3.

Figure 3: Tensor matricization generates extremely
high dimensional vectors (e.g., the dark row vector in
xrecipient). Consequently, direct modeling through the
matricization for each mode is expensive and prone to
overfitting.

There are two main issues with this simplistic

approach:

• Computationally expensive: The cost for modeling
this extremely high dimensional vectors can be
high.

• Overfitting: Due to the high dimensionality, the
sample size (i.e., the number of row vectors) is small
and prone to overfitting.

Tensor Dimensionality Reduction To alleviate
these problems, we apply tensor decomposition to re-
duce the dimensionality of all modes, in order to facili-
tate robust and efficient cluster analysis. More specifi-
cally, we adopt the Tensor decomposition with two dif-
ferent algorithms HOSVD and HOOI (Tucker) 1.

After the decomposition, the factor matrices U(i) ∈
RIi×Ri for i = 1, . . . ,M provide low-dimensional sub-
spaces on each mode. For example, as shown in Fig-
ure 2, the recipient subspace is an I ×R factor matrix.

Compared to the simplistic matricization, the space
saving on the i-th mode is in the order of O(

∏
n6=i In/R).

Depending on the subsequent analysis, the computa-
tional saving can also be tremendous.

Biased Sampling When the original tensor is too
big to be decomposed entirely, we perform biased sam-
pling on the dimensions based on the marginal norm
distribution along each mode. A similar sampling algo-
rithm has been used for Tensor CUR decomposition [12].
The pseudo-code for the sampling is shown in Algo-
rithm 1. After that, we apply a tensor decomposition on
the small sub-tensor induced by the sampled dimensions
to find the subspaces for each mode.

5.2 Single-mode clustering The goal here is to
cluster the dimensions along a specific mode, i.e., we
want to find the cluster labels C(d) (see Definition 4.1).
The overall clustering utilizes both the factor matrices
and the core tensor. First, we need to construct low-
dimensional points. Then we can apply any clustering
algorithm on them2.

We need to handle each dimension in a different
way, depending on whether a specific dimension is
used in the tensor decomposition (i.e., is included in
the sample) or not. To facilitate presentation, we
call the dimensions used in the tensor decomposition
training dimensions and the rest of the dimensions
testing dimensions.

For example, if the i-th dimension in mode-d is used
in the decomposition, the low-dimensional point is the

1Details about tensor algorithms can be found in a recent

survey [25].
2In the experiments, we use k-means, but other clustering

algorithms can also be used.

1068 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Algorithm 1: TensorSampling(tensor X ∈
RI1×···×IM , sample sizes in Jd|Md=1)

Output: sampled tensor Y ∈ RJ1×···×JM

for d = 1 to M do1

// marginalize along each mode
z = rownorm(X(d))2

Select the Jd dimensions with largest entries3

in z
Construct the subtensor Y induced by the4

selected dimensions.
5

SubAlgorithm rownorm(matrix A ∈ RM×N)6

for d = 1 to M do7

// compute the norm of the i-th row
z(d) = ‖ad:‖8

return V z9

mode product of the core tensor G and the i-th row of
factor matrix U(d). Formally, the low-dimensional point
z ∈ RR1···Rd−1Rd+1···RM is

(5.2) z = vectorize(G×d u(d)
i:).

If the i-th dimension in mode-d is not used in the
decomposition, we need to approximate it using all
the other factor matrices except the U(d). Let S

denote the slice of the i-th dimension along mode-
d of the tensor X. Then, the low-dimensional point
z ∈ RR1···Rd−1Rd+1···RM can be computed as

(5.3) z = vectorize(S× {U(j)T}j 6=d).

A pictorical view of the email tensor is shown in
Figure 4.

Figure 4: The constructions of the low-dimensional
points for training and testing dimensions

The equivalence of Equation 5.2 and Equation 5.3
for Tucker tensor is shown by the following lemma.

Algorithm 2: Single-Mode-Cluster(cluster
mode d, Data tensor X, factor matrice {U(}), core
tensor G)

foreach dimension i in the d-th mode do1

if dimension i is a training dimension then2

// Mode-product of core and U(d)

z = vectorize(G×d u(d)
i:)3

else4

Find the slice S of dimension i along the5

d-th mode
// Project on all but the d-th

factor matrics

z = vectorize(S× {U(j)T}j 6=d)6

// store the low-dimensional point
zi: = z7

cluster the rows of Z8

return cluster assignments9

Lemma 5.1. Given a Tucker tensor X = G×{U} where
U(n) is orthogonal for n = 1, . . . ,M ,

X×1 U(1)T · · · ×d−1 U(d−1)T ×d+1 U(d+1)T · · · ×M U(M)T

= G×d U(d)

Proof. Follows from the orthogonality of U(n).

We assume that the data tensor can be precisely repre-
sented as the mode products between the core and factor
matrices. If X ≈ G × {U} (instead of strict equality),
the equivalence of Equation 5.2 and Equation 5.3 be-
comes approximate as well. In terms of computation,
Equation 5.2 is much more efficient than Equation 5.3,
which implies that constructing low-dimensional points
for training dimensions is much easier than for the test-
ing dimensions. Finally, the algorithm is shown in Al-
gorithm 2. The core tensor size is an input parameter,
which is typically set to be much smaller than the size
of the data tensor.

5.3 Cross-mode clustering After identifying the
clusters within each mode, we correlate the clusters
across different modes. The goal is to explain a specific
cluster by the related clusters from the other modes.
For example in the email tensor, a recipient cluster
can be explained by the fact that they receive emails
from specific sender clusters about specific topics (i.e.,
clusters of keywords) In other words, a cluster becomes
clearer only in the context of related clusters from other
modes.

With this idea in mind, we want to find the dense
cross-mode clusters (see Definition 4.3). Typically,

1069 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

dense cross-mode clusters indicate high correlations of
a subset of dimensions across multiple modes. Or
more formally, we want to find the M -tuples {C} ≡
{C(1), . . . , C(M)} that represent the interesting cross-
mode clusters. The subtensor induced by the cross-
mode cluster {C} is denoted as X(C(1), . . . , C(M)). We
may omit a mode C(d) when all dimensions in mode d
are included in the cross-mode cluster.

Given the definition of cross-mode cluster, the
goal here is to find the densest cross-mode clusters.
The density of {C} is defined as the density of its
induced subtensor X({C}) ∈ RK1×···×KM , or formally,
‖X({C})) ‖ /

∏
i Ki. This serves as a simple but effective

measure of the “interestingness” of a cross-mode cluster.
More specifically, in this paper, we focus on identifying
the dense cross-mode clusters defined by a rectangular
sub-tensor.

A simple solution is to enumerate all the clusters
along each mode, to compute the density for all the
cross-mode clusters, and to identify the densest ones.
However, this is not efficient because computing the
density for a cross-mode cluster is an expensive oper-
ation. Without indexing, the worst cost for every such
operation is linear with respect to the number of non-
zeros in the tensor.

A better way is to leverage the fact that the tensor
norm can be incrementally computed. We can sequen-
tially scan over the non-zeros in the tensor; update the
corresponding norms of the sub-tensor induced by cross-
mode clusters; finally, pick those with the highest den-
sity. Note that the temporary norm counters will only
be created when needed, in order to avoid unnecessary
storage for empty cross-mode clusters.

6 Context-sensitive Graph Visualization

Multiway Visual Analysis

D
at

ab
as

e
V

is
ua

liz
at

io
n

M
in

in
g Tensor

Decomposition

Hierarchical
graph visualization

Interactive
summarization

Single-mode
Clustering

Cross-mode
Clustering

Cluster
summary

Original
graph

Cluster
graphs

Figure 5: The interaction between mining, data, and
visualization layers.

So far, we have focused on how to mine a content-

based network for single-mode and cross-mode clusters
as shown in the top layer of Figure 5. However, all
this information needs to be presented to the users in a
meaningful, clear and intuitive ways.

To address that, we now turn on ways to tackle scal-
ability from a cognitive perspective. In particular, we
propose to use hierachical graph visualization coupled
with single-mode and cross-mode clustering to achieve
this goal, as shown in Figure 5. The key observation
is that visualization and mining components reinforce
each other to facilitate intuitive understanding of the
data.

We give an overview of the visual analysis process
next (see Figure 5). Finally, we give several examples of
visualizations on real data, which clearly demonstrate
the power of our visualizations, combined with our
proposed content-based analysis.

6.1 Hierarchical Graph Visualization To main-
tain the user’s mental map, visualizations for huge
graphs need to compute a layout, which strikes a bal-
ance between the general and the detailed information
being displayed. To achieve this, our huge graph visu-
alization method works as follows.

Visualize clusters recursively: Clusters at mul-
tiple levels of the graph are generated by using our pro-
posed content-sensitive tensor clustering. More specifi-
cally, we apply single-mode clustering recursively on the
network dimension (specifically, on the recipient mode)
to construct hierarchical clusters, which will be used for
visualization.

Both the original graphs and the clusters are stored
in a database and are dynamically loaded level by level
at runtime. For original graphs, we store both nodes
and edges. For clusters, we only store the cluster
nodes, while cluster edges are dynamically computed
by querying the database. Due to space limitation,
the details about database schema and index are not
presented in the paper. Keep in mind that the data layer
in Figure 5 is designed to support real-time interaction
for visualization.

Each cluster is visualized as a rectangle, which
contains a subset of key nodes (sub-clusters or leaf
nodes) filtered by centrality scores within that cluster.
We use adaptive thresholding on each level to determine
the appropriate nodes to display. In all visualizations
in the paper, we intensionally set the threshold high to
fit multiple screenshots in one page. For interactive use,
we typically display a lot more nodes (in the order of a
hundred at a given level).

We design an energy based graph layout algorithm
similar to the Kamada and Kawai method [21] which is
carefully tuned to determine an optimal layout for the

1070 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

crisis edison

billion percent

million pg&e

governor official

market power

discuss energy

california utility

commission state

electricity

(a) Root level (b) Intermediate Level (c) Leaf level

Figure 6: Hierarchical graph visualization for Enron data: It illustrates one navigation path from left to right.
The bubbles show the keywords of the content dimension in a dense cross-mode cluster. The light yellow color in
(c) indicates the key people clusters and dark yellow indicate the people who directly connect to them.

hierarchical graph at the selected level. The details of
the visualization algorithm are beyond the scope of the
paper.

Interactive summarization Hierarchical graph
visualization does provide a clean layout of the nodes
(users and user clusters) for navigation. However, one
challenge still remains, i.e., how to guide the navigation
on this hierarchical graph. To address that, we need
to have intuitive and succinct summaries of the clusters
that are displayed in the visualization.

The key observation is that a set of users in the
network can be typically described by how they interact
with each other within the content modes. That is, the
best summary of s network cluster is the corresponding
content cluster. For example, a group of users belong
to the same cluster because they talk to each other us-
ing common keywords. Those keywords will be a good
summary for this cluster. To implement this observa-
tion, for a network cluster, we show its corresponding
dense cross-mode cluster on the content modes.

6.2 Case-study: visual mining on Enron data
Figure 6 plots a navigation path on the Enron email
graph. The use case is the following: Starting from the
root level (Figure 6a), we display the top-level clusters
(gray rectangles) and their key child clusters (purple
circles). When the user mouses over a cluster (or a child
cluster), the keywords from the corresponding dense
cross-mode cluster will pop up. Users can zoom into
a cluster (Figure 6b) by clicking on it. At a given level,
all the keywords from the ancestor clusters are excluded,
since the context is already given.

For example as shown in Figure 6, starting from
the root level, the user may traverse through cluster

Figure 7: Traditional graph visualization

3 (“crisis,pg&e...”), cluster 3.2 (“market, power...”)
and cluster 3.2.1 (“california...”). At the leaf level, the
user can mouse over a leaf node to show the adjacent
network clusters (which are highlighted in Figure 6c). In
fact, both networks clusters consist of the key persons
who plotted the energy trading strategy causing the
California crisis.

With the help of both single-mode and cross-mode
clusters and the hierarchical graph visualization, we
are able to interactively explore data, demonstrating
the power of this hybrid approach for facilitating user
understanding.

Another benefit is that the hierarchical graph visu-
alization provides a much more intuitive representation
of the data, compared to traditional visualization (e.g.,
Figure 7)

1071 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

7 Experimental Evaluation

In this section, we evaluate the proposed methods
quantitatively using real datasets.

The goal is to answer the following questions:

• How scalable are the proposed methods on different
datasets and parameter settings?

• What is the performance break-down on different
parts of the analysis?

• How stable are the clusters when we vary the
training dimensions?

First, we introduce the datasets and experiment set-
tings. Second, we report the results of various experi-
ments.

We use two real datasets and one synthetic dataset:
SmallBlue is a 3rd-order (sender, recipient, term) ten-
sor of size 3, 679 × 3, 679 × 1000 which is constructed
based on the social communication data from IBM’s
social network analysis suite, SmallBlue [14]. To con-
struct the tensor, we take 3,679 users who installed
the SmallBlue software and parse the terms by keeping
the top-1000 frequent words. The density is 0.0341%
(percentage of nonzeros). Enron is also a 3rd-order
(sender,recipient,term) tensor of size 500×500×500. We
parse the Enron corpus [37] by filtering the stopwords
and keeping the top-500 users and keywords. The den-
sity is 1.7%. Random is a set of random tensors with
varying density, tensor order, and dimensionality. We
consider the following performance metrics: 1) CPU
time is the elapsed wall-clock time for the computa-
tion. This determines how efficiently we can solve the
problem. 2) Distance stability is the average distance
changes (in percentage) of all pairs of dimensions before
and after sampling. 3) Cluster stability is measured by
two metrics: precision and recall with respect to cluster
label changes with and without sampling.

7.1 Computational Performance on tensor de-
composition The cost of tensor decomposition de-
pends on the properties of the data tensors. In partic-
ular, there are several data-dependent parameters: 1)
density (percentage of nonzeros), 2) tensor order, 3)
dimensionality of each mode, and 4) core tensor size.
We illustrate their impact using synthetic, random ten-
sors, comparing both HOSVD and the Tucker decom-
position. Figure 8 illustrates the computational perfor-
mance when varying different data-dependent parame-
ters. Across all parameter settings, HOSVD is consis-
tently faster than Tucker because Tucker typically re-
quires more than one iterations until convergence. Note
that for all experiments, HOSVD and Tucker give very

similar approximation accuracy (relative difference less
than 5%), so we omitted that for space.

Density: Figure 8(a) shows the CPU time (y-axis)
vs. the density (x-axis). Here we vary the density
from .001 to 1 percent, while fixing size of the random
to 500× 500× 500 and the size of the core tensor to
10 × 10 × 10. CPU time for both HOSVD and Tucker
increases sub-linearly with density since x-axis increases
exponentially, while y-axis increases roughly linearly.

Order: Figure 8(b) shows the CPU time (y-axis)
vs. the tensor order (x-axis). We vary tensor order from
3 to 5 by fixing the data tensor dimensionality to 50
along each mode, with overall density .1%, and setting
the core tensor size to 10 × 10 × 10. As expected, the
CPU time increases super-linearly with respect to the
tensor order for both HOSVD and Tucker. This is due to
the exponential increase of the tensor sizes (i.e., actual
number of non-zeros) with respect to the tensor order.

Dimensionality: Figure 8(c) shows the CPU time
(y-axis) vs. the tensor dimensionality (x-axis). We
vary tensor dimensionality along each mode from 100
to 1,000, while fixing the order to 3, the density to .1%,
and the core tensor size to 10 × 10 × 10. CPU time
increases linearly with dimensionality (tensor size).

Core-size: In Figure 8(d), as we increase the result
size (core tensor size), the CPU time increases roughly
linearly for both HOSVD and Tucker. We vary the core
tensor size from 5×5×5 to 25×25×25, while fixing the
tensor of size 500×500×500 with the density .001%.

7.2 Scalability and stability on clustering The
main cost of clustering can be divided into two parts:
computing the low-dimensional representation and find-
ing the per-mode clusters.

Low-dimensional representation: As shown in
Section 5.1, we use tensor decomposition to obtain low-
dimensional representation. In order to scale up to large
datasets, we use biased sampling to reduce the cost of
tensor decomposition. Here we evaluate both stability
and speed of this sampling step.

We vary the sampling probability from 5% to 30%
on the dimensions of a given mode3. We define distance
stability as

1−
∑

pair i,j ‖d(D(i), D(j))− d(D̃(i), D̃(j))‖∑
pair i,j ‖d(D(i), D(j))‖

where D(i) (D̃(i)) is the low-dimensional point for
dimension-i without (with) sampling. Intuitively, this
measures the relative deviation of the distances over all
pairs of dimensions. Ideally, we want to achieve high

3We present the results for sampling on the sender mode. We

omit the similar results for the other modes.

1072 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

(a) Density (b) Tensor order (c) Dimensionality (d) Core size

Figure 8: Computational performance when varying data-dependent parameters. Default settings are: tensor
order M = 3, dimensionality n = 500 per mode, core tensor size 103.

stability, because variations in distance will impact the
overall clustering results.

Figure 9(a) shows the distance stability (y-axis)
increases as the sampling probability (x-axis). Note that
even with 5% sampling rate, both Smallblue and Enron
give very high distance stability. Figure 9(a) shows
the distance stability (y-axis) increases as the CPU-
time (x-axis). Compared to full-tensor decomposition
(shown with ‘*’), sampling can significantly reduce
the computational cost without losing much distance
stability.

(a) distance stability (b) CPU time

Figure 9: Low-dimensional representation construction:
a) distance variation gradually increases as the sample
size reduces, b) Sampling reduces the computational
time significantly.

Clustering stability
We use the standard K-means clustering algorithm

on the low-dimensional representation. Since the run-
ning time analysis of K-means is well-known, we omit-
ted the speed evaluation. Also note that the cost
of cross-mode clustering is negligible compared to the
other parts, since it only requires a single scan over the
nonzeros. Therefore, we omit the CPU time evaluation
for cross-mode clustering.

Instead, we focus on studying cluster stability while
varying the sampling probability. In order to scale
to large datasets, we have to rely on sampling for
efficiently building the low-dimensional representation.
Therefore, to quantify how stable the clusters are, we

use the standard precision and recall measures, defined
as follows:

• Precision: Given two dimensions that belong to the
same cluster using the sampled tensor, the precision
is the probability that they also belong to the same
cluster using the full tensor.

• Recall: Given two dimensions that belong to the
same cluster using the full tensor, the recall is
the probability that they also belong to the same
cluster using the sampled tensor.

Figure 10 illustrates the precision and recall for both
Enron and Smallblue datasets as a function of the
number of clusters. Here the sampling probability is 5%.
Across all settings on both datasets, precision and recall
are high, which confirms that using sampled tensor can
significantly reduce computational cost. The overall
precision and recall of Smallblue is higher than Enron,
because the distance stability of Smallblue is higher, as
shown in Figure 9(a).

(a) Enron (b) Smallblue

Figure 10: Cluster stability in terms of precision and
recall: Both precision and recall are consistently high
across different datasets and cluster sizes. The cluster
stability is better on Smallblue compared to Enron, be-
cause the distance stability of Smallblue is higher than
Enron as shown in Figure 9(a). Sampling probability is
5% for both datasets.

1073 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

8 Related Work

Tensor applications Tucker decompositions have
been used in a variety of applications in data min-
ing, and we highlight several distinctive examples here.
Savas and Eldén [30] applied the HO-SVD (a version of
the Tucker decomposition) to identifying handwritten
digits. Acar et al. [2, 3] applied Tucker and other tensor
decompositions to the problem of separating conversa-
tions in online chatrooms and Chi et al. [9] have applied
it to the blogosphere. J.-T. Sun et al. [34] used Tucker
for analyzing clickthrough data. J. Sun et al. [33, 32]
have written a pair of papers on dynamically updating
a Tucker approximation, with applications ranging from
text analysis to environmental and network modeling.
Kolda and J. Sun [26] introduce a scalable Tucker de-
composition for sparse tensors.

Information retrieval and graph analysis
In the field of traditional information retrieval (i.e.,
document-term or user-term relationships), Latent Se-
mantic Indexing (LSI) [29] is based upon the observation
that different words do not occur independently within
documents. To that end, it models term dependencies
using linear correlations and employs the singular value
decomposition (SVD) to discover “latent” topics or fac-
tors in the document-term matrix.

Conversely, in the context of graphs (i.e., document-
document or user-user relationships), similar ideas
and decompositions applied to the adjacency (i.e.,
document-document) matrix, lead to spectral cluster-
ing [28] and graph partitioning [22, 10]. Also related
are ranking algorithms, such as HITS [23] and PageR-
ank [7]. The former operates on the result set of a tradi-
tional IR query, whereas the latter operates on the entire
web graph. Both, however, employ similar fundamen-
tal mathematical concepts, to rank pages according to
some notion of centrality or steady-state random walk
probability.

Moving away from methods based on linear algebra,
probability mixture models have been employed to an-
alyze content and documents. Cohn and Hofmann [11]
introduced an extension of probabilistic latent semantic
indexing (PLSI), which tries to model both hyperlink
and topic structure in a weh graph. Their method,
however, models content associated with nodes (i.e.,
webpages) and not with source-destination pairs (i.e.,
edges, such as for example anchor text on hyperlinks).
The author-recipient-topic (ART) model [27] employs
latent Dirichlet allocation (LDA) to decompose the term
distribution into three factors (corresponding to each
component of the model’s name). Finally, similar ap-
proaches have been employed to model information dif-
fusion in social networks [31].

The TOPHITS method [4] is most similar in spirit

to our work in this paper. It is based on multi-linear
algebra techniques, which generalize the basic tools used
in, e.g., LSI and HITS. However, TOPHITS focuses on
an entirely different application, namely analyzing the
relationships between websites (i.e., sets of webpages
within the same domain), leveraging the anchor text of
links among them.

Visualization Graph visualization is an active re-
search area in information visualization. One major
challenge in graph visualization is graph size [17]. Huge
graphs pose several difficult problems. First, if the num-
ber of elements is large, high computational complexity
tends to be a problem. Second, even if it is possible
to place all the elements, the issue of readability or us-
ability arises, because it becomes impossible to discern
vertices and edges. Therefore it is important to study
graph visualization technology for efficiently browsing
and navigating huge graphs.

Over the past decades, much effort has been done
for huge graph visualization [17, 15, 36, 18]. A common
strategy for visualizing large graphs is to use cluster-
ing methods to find groups of related nodes in the large
graph, then visualize the graph at multiple abstract lev-
els. The node clustering approach has been taken by a
number of graph drawing researchers [15, 36, 13]. Most
existing cluster-based methods only use one cluster-
ing method, structure-based clustering or content-based
clustering. Such methods may fail to reveal the complex
relationships from multiple, combined aspects. Edge
clustering approaches have also been proposed, such as
[19] which relies on node hierarchies provided a priori.
Finally, the work of [20] also recognizes both aspects of
scalability (computational and cognitive) as challenges,
and applies METIS recursively to facilitate interactive
visualization and exploration of graphs which, however,
do not involve any content modes.

In contrast to previous work, in this paper we
focus on content-sensitive visualization through clusters
from different modes, which provides more intuitive
presentation than traditional data mining and graph
visualization can provide on their own.

9 Conclusions
In this paper, we combine the power of data mining and
information visualization, to provide a comprehensive
methodology for the analysis and navigation of huge,
content-specific social networks. In particular, we model
content-based social network as tensors. We develop an
analytic framework for finding single- and cross-mode
clusters. Leveraging the cluster results, we present a
hierarchical visualization to explore the data, at various
levels of detail. We evaluate our methods on both syn-
thetic and real datasets. The former include the popular
Enron email dataset, and data from Smallblue, a social

1074 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

network analysis platform for business intelligence ap-
plications. The experiments demonstrate both the com-
putational efficiency as well as the intuitive effectiveness
of our proposed methodology.

Acknowledgement We are pleased to acknowledge
Brett Bader and Tamara Kolda from Sandia National lab
for providing the tensor toolbox[5] which makes our imple-
mentation and experiments an easy job.

References

[1] http://www.research.ibm.com/smallblue/.
[2] E. Acar, S. A. Çamtepe, M. S. Krishnamoorthy, and

B. Yener. Modeling and multiway analysis of chatroom
tensors. In ISI 2005, pages 256–268, 2005.

[3] E. Acar, S. A. Çamtepe, and B. Yener. Collective sam-
pling and analysis of high order tensors for chatroom
communications. In ISI 2006, pages 213–224, 2006.

[4] B. Bader and T. Kolda. The TOPHITS model for
higher-order web link analysis. In Workshop on Link
Analysis, 2006.

[5] B. W. Bader and T. G. Kolda. Algorithm 862: MAT-
LAB tensor classes for fast algorithm prototyping.
ACM Trans. Math. Softw., 32(4):635–653, 2006.

[6] B. W. Bader and T. G. Kolda. Efficient MATLAB
computations with sparse and factored tensors. SIAM
J. Sci. Comput., 30(1):205–231, 2007.

[7] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Com. Net., 30(1–
7):107–117, 1998.

[8] J. D. Carroll and J. J. Chang. Analysis of individual
differences in multidimensional scaling via an N-way
generalization of ‘Eckart-Young’ decomposition. Psy-
chometrika, 35:283–319, 1970.

[9] Y. Chi, B. L. Tseng, and J. Tatemura. Eigen-trend:
trend analysis in the blogosphere based on singular
value decompositions. In CIKM, pages 68–77, 2006.

[10] F. Chung. Spectral Graph Theory. AMS, 1997.
[11] D. Cohn and T. Hofmann. The missing link: A

probabilistic model o fdocument content and hypertext
connectivity. In NIPS, 2001.

[12] P. Drineas and M. W. Mahoney. A randomized al-
gorithm for a tensor-based generalization of the svd.
Technical Report YALEU/DCS/TR-1327, 2005.

[13] P. Eades and Q.-W. Feng. Drawing clustered graphs
on an orthogonal grid. In International Symposium on
Graph Drawing, pages 146–157, 2005.

[14] K. Ehrlich, C.-Y. Lin, and V. Griffiths-Fisher. Search-
ing for experts in the enterprise: Combining text and
social network analysis. In GROUP, 2007.

[15] Y. Frishman and A. Tal. Navigating clustered graphs
using force-directed methods. Journal of Graph Algo-
rithms Applications, 4(3):157–181, 2000.

[16] R. A. Harshman. Foundations of the PARAFAC
procedure: Models and conditions for an “explanatory”
multi-modal factor analysis. UCLA Working Papers in
Phonetics, 16:1–84, 1970.

[17] I. Herman, G. Melancon, and M. Marshall. Graph visu-
alization and navigation in information visualization: a
survey. IEEE Transactions on Visualization and Com-
puter Graphics, 6(1):24–43, January-March 2000.

[18] I. Herman, G. Melancon, and M. Marshall. Multi-
level graph layout on the gpu. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1310–
1317, November 2000.

[19] D. Holten. Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. In InfoVis,
2006.

[20] J. F. R. Jr., H. Tong, A. J. Traina, C. Faloutsos, and
J. Leskovec. GMine: A system for scalable, interactive
graph visualization and mining. In VLDB, 2006.

[21] T. Kamada and S. Kawai. An algorithm for drawing
general undirected graphs. Information Processing
Letters, 31(1):7–15, April 1989.

[22] G. Karypis and V. Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. J. Par. Distr. Comp.,
48(1):96–129, 1998.

[23] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. JACM, 46(5):604–632, 1999.

[24] T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. In revision for SIAM Review.

[25] T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. SIAM Review.

[26] T. G. Kolda and J. Sun. Scalable tensor decomposi-
tions for multi-aspect data mining. In ICDM, 2008.

[27] A. McCallum, A. Corrada-Emmanuel, and X. Wang.
Topic and role discovery in social networks. In IJCAI,
2005.

[28] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In NIPS, 2001.

[29] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and
S. Vempala. Latent semantic indexing: A probabilistic
analysis. In PODS, 1998.

[30] B. Savas and L. Eldén. Handwritten digit classifica-
tion using higher order singular value decomposition.
Pattern Recogn., 40(3):993–1003, 2007.

[31] X. Song, C.-Y. Lin, B. L. Tseng, and M.-T. Sun. Mod-
elling and predicting personal information dissemina-
tion behavior. In KDD, 2005.

[32] J. Sun, S. Papadimitriou, and P. Yu. Window-based
tensor analysis on high-dimensional and multi-aspect
streams. In ICDM, 2006.

[33] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and
graphs: Dynamic tensor analysis. In SIGKDD, 2006.

[34] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen.
CubeSVD: a novel approach to personalized web
search. In WWW, pages 382–390, 2005.

[35] L. R. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3), 1966.

[36] C. Walshaw. A multilevel algorithm for force-directed
graph drawing. Journal of Graph Algorithms Applica-
tions, 7(3):253–285, 2003.

[37] Enron database. http://bailando.sims.berkeley.

edu/enron email.html.

1075 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

http://www.research.ibm.com/smallblue/
http://bailando.sims.berkeley.edu/enron_email.html
http://bailando.sims.berkeley.edu/enron_email.html

	Introduction
	Background
	Tensor
	Basic Tensor Operations
	Tensor Decompositions

	Data Model
	Problem Overview
	Content-based Network Analysis
	Context-sensitive Graph Visualization

	Content-based Network Analysis
	Dimensionality reduction through Tensor decomposition
	Single-mode clustering
	Cross-mode clustering

	Context-sensitive Graph Visualization
	Hierarchical Graph Visualization
	Case-study: visual mining on Enron data

	Experimental Evaluation
	Computational Performance on tensor decomposition
	Scalability and stability on clustering

	Related Work
	Conclusions

