
OBE: Outlier by Example

Cui Zhu1, Hiroyuki Kitagawa2, Spiros Papadimitriou3, and Christos Faloutsos3

1 Graduate School of Systems and Information Engineering, University of Tsukuba
2 Institute of Information Sciences and Electronics, University of Tsukuba

{zhucui, kitagawa}@kde.is.tsukuba.ac.jp
3 School of Computer Science, Carnegie Mellon University

{spapadim+, christos}@cs.cmu.edu

Abstract. Outlier detection in large datasets is an important problem.
There are several recent approaches that employ very reasonable defi-
nitions of an outlier. However, a fundamental issue is that the notion
of which objects are outliers typically varies between users or, even,
datasets. In this paper, we present a novel solution to this problem, by
bringing users into the loop. Our OBE (Outlier By Example) system is, to
the best of our knowledge, the first that allows users to give some exam-
ples of what they consider as outliers. Then, it can directly incorporate a
small number of such examples to successfully discover the hidden con-
cept and spot further objects that exhibit the same “outlier-ness” as the
examples. We describe the key design decisions and algorithms in build-
ing such a system and demonstrate on both real and synthetic datasets
that OBE can indeed discover outliers that match the users’ intentions.

1 Introduction

In many applications (e.g., fraud detection, financial analysis and health moni-
toring), rare events and exceptions among large collections of objects are often
more interesting than the common cases. Consequently, there is increasing at-
tention on methods for discovering such “exceptional” objects in large datasets
and several approaches have been proposed.

However, the notion of what is an outlier (or, exceptional/abnormal object)
varies among users, problem domains and even datasets (problem instances):
(i) different users may have different ideas of what constitutes an outlier, (ii)
the same user may want to view a dataset from different “viewpoints” and, (iii)
different datasets do not conform to specific, hard “rules” (if any).

We consider objects that can be represented as multi-dimensional, numeri-
cal tuples. Such datasets are prevalent in several applications. From a general
perspective [4,7,8,2], an object is, intuitively, an outlier if it is in some way “sig-
nificantly different” from its “neighbors.” Different answers to what constitutes
a “neighborhood,” how to determine “difference” and whether it is “significant,”
would provide different sets of outliers.

Typically, users are experts in their problem domain, not in outlier detection.
However, they often have a few example outliers in hand, which may “describe”

H. Dai, R. Srikant, and C. Zhang (Eds.): PAKDD 2004, LNAI 3056, pp. 222–234, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

OBE: Outlier by Example 223

their intentions and they want to find more objects that exhibit “outlier-ness”
characteristics similar to those examples. Existing systems do not provide a
direct way to incorporate such examples in the discovery process.

Example. We give a concrete example to help clarify the problem. The example
is on a 2-d vector space which is easy to visualize, but ideally our method should
work on arbitrary dimensionality or, even, metric datasets1.

Consider the dataset in Figure 1. In this dataset, there are a large sparse clus-
ter, a small dense cluster and some clearly isolated objects. Only the isolated
objects (circle dots) are outliers from a “bird’s eye” view. In other words, when
we examine wide-scale neighborhoods (i.e., with large radius—e.g., covering most
of the dataset), only the isolated objects have very low neighbor densities, com-
pared with objects in either the large or the small cluster. However, consider
the objects on the fringe of the large cluster (diamond dots). These can also be
regarded as outliers, if we look closer at mid-scale (i.e., radius) neighborhoods.
Also, objects on the fringe of the small cluster (cross dots) become outliers, if
we further focus into small-scale neighborhoods. As exemplified here, different
objects may be regarded as outliers, depending on neighborhood scale (or, size).

This scenario is intuitive from the users’ perspective. However, to the best of our
knowledge, none of the existing methods can directly incorporate user examples
in the discovery process to find out the “hidden” outlier concept that users may
have in mind.

In this paper, we propose Outlier By Example (OBE), an outlier detection
method that can do precisely that: discover the desired “outlier-ness” at the
appropriate scales, based on a small number of examples. There are several
challenges in making this approach practical; we briefly list the most important:
(1) What are the appropriate features that can capture “outlier-ness?” These
should ideally capture the important characteristics concisely and be efficient
to compute. However, feature selection is only the tip of the iceberg. (2) Fur-
thermore, we have to carefully choose exactly what features to extract. (3) The
method should clearly require minimal user input and effectively use a small
number of positive examples in order to be practical. Furthermore, it should
ideally not need negative examples. (4) Given these requirements, can we train
a classifier using only the handful of positive examples and unlabeled data? In
the paper we describe the key algorithmic challenges and design decisions in
detail.

In summary, the main contributions of this paper are: (1) We introduce
example-based outlier detection. (2) We demonstrate its intuitiveness and fea-
sibility. (3) We propose OBE, which, to the best of our knowledge, is the first
method to provide a solution to this problem. (4) We evaluate OBE on both real
and synthetic data, with several small sets of user examples. Our experiments
demonstrate that OBE can succesfully incorporate these examples in the discov-

1 A metric dataset consists of objects for which we only know the pairwise distances
(or, “similarity”), without any further assumptions.

224 C. Zhu et al.

ery process and detect outliers with “outlier-ness” characteristics very similar to
the given examples.

The remainder of the paper is organized as follows: In section 2, we discuss
related work on outlier detection. In section 3, we discuss the measurement of
“outlier-ness” and the different properties of outliers. Section 4 presents the pro-
posed method in detail. Section 5 reports the extensive experimental evaluation
on both synthetic and real datasets. Finally, Section 6 concludes the paper.

2 Related Work

In essence, outlier detection techniques traditionally employ unsupervised learn-
ing processes. The several existing approaches can be broadly classified into
the following categories: (1) Distribution-based approach. These are the “clas-
sical” methods in statistics [1,11]. (2) Depth-based approach. This computes
different layers of k-d convex hulls and flags objects in the outer layer as out-
liers [5]. (3) Clustering approach. Many clustering algorithms detect outliers as
by-products [6]. (4) Distance-based approach. Distance-based outliers [7,8,9,10,3]
use a definition based on a single, global criterion. All of the above approaches
regard being an outlier as a binary property. They do not take into account
both the degree of ”outlier-ness” and where the ”outlier-ness” is presented. (5)
Density-based approach, proposed by M. Breunig, et al. [2]. They introduced a
local outlier factor (LOF) for each object, indicating its degree of “outlier-ness.”
LOF depends on the local density of its neighborhood. The neighborhood is de-
fined by the distance to the MinPts-th nearest neighbor. When we change the
value of the parameter MinPts, the degree of ”outlier-ness” can be estimated in
different scopes. However, LOF is very sensitive to the selection of MinPts values,
and it has been proven that LOF cannot cope with the multi-granularity prob-
lem. (6) LOCI. We proposed the multi-granularity deviation factor (MDEF) and
LOCI in [12]. MDEF measures the “outlier-ness” of objects in neighborhoods of
different scales. LOCI examines the MDEF values of objects in all ranges and
flags as outliers those objects whose MDEF values deviate significantly from the
local average in neighborhoods of some scales. So, even though the definition of
MDEF can capture “outlier-ness” in different scales, these differences are up to
the user to examine manually.

Another outlier detection method was developed in [15], which focuses on
the discovery of rules that characterize outliers, for the purposes of filtering new
points in a security monitoring setting. This is a largely orthogonal problem.
Outlier scores from SmartSifter are used to create labeled data, which are then
used to find the outlier filtering rules.

In summary, all the existing methods are designed to detect outliers based
on some prescribed criteria for outliers. To the best of our knowledge, this is the
first proposal for outlier detection using user-provided examples.

OBE: Outlier by Example 225

Fig. 1. Illustration of different
kinds of outliers in a dataset.

Fig. 2. Illustrative dataset and MDEF plots.

3 Measuring Outlier-ness

In order to understand the users’ intentions and the “outlier-ness” they are in-
terested in, a first, necessary step is measuring the “outlier-ness.” It is crucial
to select features that capture the important characteristics concisely. However,
feature selection is only the initial step. In OBE, we employ MDEF for this pur-
pose, which measures “outlier-ness” of objects in the neighborhoods of different
scales (i.e., radii).

Detailed definition of the multi-granularity deviation factor (MDEF) is
given in [12]. Here we describe some basic terms and notation. Let the r -
neighborhood of an object pi be the set of objects within distance r of pi .
Let n(pi , αr) and n(pi , r) be the numbers of objects in the αr -neighborhood
(counting neighborhood) and r -neighborhood (sampling neighborhood) of pi re-
spectively.2 Let n̂(pi , r , α) be the average, over all objects p in the r-
neighborhood of pi , of n(p, α, r).

Definition (MDEF). For any pi , r and α, the multi-granularity deviation factor
(MDEF) at radius (or scale) r is defined as follows:

MDEF (pi , r , α) =
n̂(pi , r , α) − n(pi , αr)

n̂(pi , α, r)
(1)

Intuitively, the MDEF at radius r for a point pi is the relative deviation of
its local neighborhood density from the average local neighborhood density in
its r -neighborhood. Thus, an object whose neighborhood density matches the
average local neighborhood density will have an MDEF of 0. In contrast, outliers
will have MDEFs far from 0. In our paper, the MDEF values are examined (or,
sampled) at a wide range of sampling radii r, rmin ≤ r ≤ rmax , where rmax is the
maximum distance of all object pairs in the given dataset and rmin is determined
based on the number of objects in the r -neighborhood of pi . In our experiments,
for each pi in the dataset, rmin for pi (denoted by rmin,i) is the distance to its
20-th nearest neighbor. In other words, we do not examine the MDEF value of
an object until the number of objects in its sampling neighborhood reaches 20.
This is a reasonable choice which effectively avoids introduction of statistical
errors in MDEF estimates in practice.

2 In all experiments, α = 0.5 as in [12].

226 C. Zhu et al.

Next we give some examples to better illustrate MDEF. Figure 2 shows a
dataset which has mainly two groups: a large, sparse cluster and a small, dense
one, both following a Gaussian distribution. There are also a few isolated points.
We show MDEF plots for four objects in the dataset.

– Consider the point in the middle of the large cluster, Nm, (at about x = 70,
y = 68). The MDEF value is low at all scales: compared with its neighbor-
hood, whatever the scale is, the local neighborhood density is always similar
to the average local density in its sampling neighborhood. So, the object can
be always regarded as a normal object in the dataset.

– In contrast, for the other three objects, there exist situations where the
MDEFs are very large, some times even approaching 1. This shows that
they differ significantly from their neighbors in some scales. The greater the
MDEF value is, the stronger the degree of ”outlier-ness”.

Even though all three objects in Figure 2 can be regarded as outliers, they
are still different, in that they exhibit “outlier-ness” at different scales.

– The MDEF value of the outlier in the small cluster, SC-O, (at about x = 22,
y = 27), reaches its maximum at radius r ≈ 5, then it starts to decrease
rapidly until it becomes 0 and remains there for a while (in the range of r ≈
23−−45). Then the MDEF value increases again but only to the degree of 0.6.
The change of MDEF values indicates that the object is extremely abnormal
compared with objects in the very small local neighborhood (objects in the
small cluster).

– On the other hand, the outlier of the large cluster, LC-O, (at about x = 70,
y = 98), exhibits strong “outlier-ness” in the range from r = 10 to r = 30,
then becomes more and more ordinary as we look at a larger scale.

– For the isolated outlier, O-O, (at about x = 47, y = 20), its MDEF value
stays at 0 up to almost r = 22, indicating that it is an isolated object. Then,
it immediately displays a high degree of “outlier-ness.”

4 Proposed Method (OBE)

4.1 Overview

OBE detects outliers based on user-provided examples and a user-specified frac-
tion of objects to be detected as outliers in the dataset. OBE performs outlier
detection in three stages: feature extraction step, example augmentation step
and classification step. Figure 3 shows the overall OBE framework.

4.2 Feature Extraction Step

The purpose of this step is to map all objects into the MDEF-based feature
space, where the MDEF plots of objects capturing the degree of “outlier-ness,”
as well as the scales at which the “outlier-ness” appears, are represented by

OBE: Outlier by Example 227

vectors. Let D be the set of objects in the feature space. In this space, each
object is represented by a vector: Oi = (mi0, mi1, . . . , min), Oi ∈ D , where
mij = MDEF (pi, rj , αr), 0 ≤ j ≤ n, r0 = mink(rmin,k), rn = rmax, rj =
rn−r0

n
j + r0.

3

4.3 Example Augmentation Step

In the context of outlier detection, outliers are usually few, and the number of
examples that users could offer is even less. If we only learn from the given exam-
ples, the information is very little to be used to construct an accurate classifier.
However, example-based outlier detection is practical only if the number of re-
quired examples is small. OBE effectively solves this problem by augmenting the
user-provided examples.

In particular, the examples are augmented by adding outstanding outliers
and artificial positive examples, based on the original examples.

Outstanding Outliers. After all objects are projected into the feature
space, we can detect outstanding outliers. The set of outstanding outliers is
defined by {Oi | max M(Oi) > K, Oi ∈ D}, where max M(Oi) = maxj(mij)
and K is a threshold.

Artificial Examples. The examples are further augmented by creating
“artificial” data. This is inspired by the fact that an object is sure to be an
outlier if all of its feature values (i.e., MDEF values) are greater than those of
the given outlier examples. Figure 4 shows the created artificial data and the
original example.

Artificial data are generated in the following way: (1) Take the difference
between the max M(Oi) and the threshold K, Diff M (i) = K − max M(Oi).
(2) Divide the difference, Diff M (i), into x intervals, where x is the number
of artificial examples generated from an original outlier example plus 1. For
instance, if the intended augmentation ratio is 200%, two artificial examples are
generated from each original example. Then we divide Diff M (i) into 3 intervals
(x = 3), Intv M(i) = Diff M (i)/x . (3) Then, create artificial examples as:
O A(i, j)=(mi0 + j ∗ Intv M(i), mi1 + j ∗ Intv M(i), . . . , min + j ∗ Intv M(i))
for 1 ≤ j ≤ x − 1. Here, O A(i, j) is the j-th artificial example generated from
object Oi.

In this way, the “outlier-ness strength” of the user’s examples is amplified,
in a way consistent with these examples.

Putting together the original examples, outstanding outliers and artificial exam-
ples, we get the positive training data.

4.4 Classification Step

So far, the (augmented) positive examples, as well as the entire, unlabeled
dataset are available to us. The next crucial step is finding an efficient and

3 More precisely, if rj ≥ rmin,i , mij = MDEF (pi, rj , αr), otherwise, mij = 0.

228 C. Zhu et al.

Feature
Space

Feature
Extraction

Feature
Space

Feature
Extraction

Positive Example
AugmentationUnlabeled

Data

Positive Example
AugmentationUnlabeled

Data

OutliersOutliers Classification

Data Set

Examples

Data Set

Examples

FractionFraction

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90 100

M
D

E
F

r

MDEF Plot

Original Example
Artificial Example

Fig. 3. The Framework of OBE Fig. 4. The Artificial and the Original Examples

effective algorithm to discover the “hidden” outlier concept that the user has in
mind.

We use an SVM (Support Vector Machine) classifier to learn the “outlier-
ness” of interest to the user and then detect outliers which match this. Tra-
ditional classifier construction needs both positive and negative training data.
However, it is too difficult and also a burden for users to provide negative data.
Most objects fall in this category and it is unreasonable to expect users to ex-
amine them.

However, OBE addresses this problem and can learn only from the positive
examples obtained in the augmentation step and the unlabeled data (i.e., the
rest of the objects in the dataset). The algorithm shown here uses the marginal
property of SVMs. In this sense, it bears some general resemblance to PEBL [13],
which was also proposed for learning from positive and unlabeled data. However,
in PEBL, the hyperplane for separating positive and negative data is set as close
as possible to the set of given positive examples. In the context of OBE, the
positive examples are just examples of outliers, and it is not desirable to set
the hyperplane as in PEBL. The algorithm here decides the final separating
hyperplane based on the fraction of outliers to be detected. Another difference
between OBE and PEBL is that strong negative data are determined taking the
characteristics of MDEF into consideration.

The classification step consists of the following five sub-steps.
Negative training data extraction sub-step. All objects are sorted in

descending order of max M. Then, from the objects at the bottom of the list,
we select a number of (strong) negative training data equal to the number of
positive training data. Let the set of strong negative training data be NEG. Also,
let the set of positive training data obtained in the example augmentation step
be POS.

Training sub-step. Train a SVM classifier using POS and NEG.
Testing sub-step. Use the SVM to divide the dataset into the positive set

P and negative set N.
Update sub-step. Replace NEG with N, the negative data obtained in the

testing sub-step.
Iteration sub-step. Iterate from the training sub-step to the updating

sub-step until the ratio of the objects in P converges to the fraction specified by
the user. The objects in the final P are reported to the user as detected outliers.

OBE: Outlier by Example 229

Input:

Set of outlier examples: E
Fraction of outliers: F
Dataset: D

Output:

Outliers like examples
Algorithm:

OO := ∅ // Outstanding outliers
// Feature extraction step:
For each pi ∈ D

For each j (0 ≤ j ≤ n)
Compute MDEF value mij

If mij > K

Then OO := OO ∪ {pi}

// Example augmentation step:
For each example in E

Create artificial examples
POS := E ∪ OO ∪ artificial examples
// Classification step:
NEG := strongest negatives
P := D
Do {

P ′ := P
SVM := train SVM (POS, NEG)
(P , N) := SVM.classify (D)
NEG := N

} while (|P | ≥ F ∗ |D | and |P | �= |P ′|)
return P ′

Fig. 5. The Overall Procedure of OBE

Table 1. Description of synthetic and real datasets.

Dataset Description

Uniform A 6000-point group following an uniform distribution.

Ellipse A 6000-point ellipse following a Gaussian distribution.

Mixture A 5000-point sparse Gaussian cluster, a 2000-point dense Gaussian clus-
ter and 10 randomly scattered outliers.

NYWomen Marathon runner data, 2229 women from the NYC marathon: average
pace (in minutes per mile) for each stretch (6.2, 6.9, 6.9, and 6.2 miles).

Figure 5 summarizes the overall procedure of OBE.

5 Experimental Evaluation

In this section, we describe our experimental methodology and the results ob-
tained by applying OBE to both synthetic and real data, which further illustrate
the intuition and also demonstrate the effectiveness of our method.

We use three synthetic and one real datasets (see Table 1 for descriptions)
to evaluate OBE.

5.1 Experimental Procedure

Our experimental procedure is as follows:

1. To simulate interesting outliers, we start by selecting objects which rep-
resent “outlier-ness” at some scales under some conditions, for instance,∧

q(minq, maxq, Condq, Kq), where (minq, maxq, Condq, Kq) stands for
the condition that (mij Condq Kq) for some j such that minq ≤ j ≤ maxq,
where Condq could be either “>” or “<”.

230 C. Zhu et al.

Table 2. Interesting Outliers, Discriminants and the Performance of OBE. OO denotes
outstanding outliers, IO denotes interesting outliers. Precision(Preci-), recall(Reca-)
and the number of iterations(Iter-) for convergence in the classification step are used
to show the performance of OBE.

Cases OBE
Dataset OO

Label Discription Condition IO Preci- Reca- Iter-

Uniform U-Fringe Fringe (0.3, 0.6, >, 0.4) 330 82.76 88.18 8.1
Dataset

0
U-Corner Corner (1, 2, >, 0.5) 274 91.90 97.92 4.1

E-Fringe Fringe (5, 30, >, 0.85) 214 90.20 93.55 6.1
(15, 25, >, 0.8)

Ellipse 15
E-Long Long Ends

(30, 40, >, 0.6)
140 88.67 92.14 5.4

Dataset (5, 15, >, 0.8)
E-Short Short Ends

(35, 40, <, 0.6)
169 76.46 80.00 10.4

M-All All (1, 35, >, 0.9) 166 86.32 93.80 4.5
Mixture 29 M-Large Large Cluster (15, 35, >, 0.9) 123 91.52 95.37 4.6
Dataset M-Small Small Cluster (1, 5, >, 0.9) 72 91.30 97.92 5.3

N-FS Very Fast/Slow (800, 1400, >, 0.7) 91 81.53 84.95 6.5
(300, 500, >, 0.8)

NYWomen 17
N-PF Partly Fast

(1400, 1600, <,0.4)
126 73.07 78.81 6.9

Dataset (100, 300, >, 0.8)
N-SS Stable Speed

(400, 600, <, 0.3)
121 66.55 70.74 9.2

2. Then, we “hide” most of these outliers. In particular, we randomly sample
y% of the outliers to serve as examples that would be picked by a user.

3. Next, we detect outliers using OBE.

4. Finally, we compare the detected outliers to the (known) simulated set of
outliers. More specifically, we evaluate the success of OBE in recovering the
hidden outlier concept using precision/recall measurements.

OBE reports as interesting outliers the outstanding ones, as well as those
returned by the classifier. Table 2 shows all the sets of interesting outliers along
with the corresponding discriminants used as the underlying outlier concept in
our experiments. In the table, for instance, the discriminant (1, 35, >, 0.9)
means that objects are selected as interesting outliers when their MDEF values
are greater than 0.9 in the range of radii from 1 to 35. The number of the
outstanding outliers and interesting outliers is also shown in Table 2. We always
randomly sample 10% (y = 10) of the interesting outliers to serve as user-
provided examples and “hide” the rest.

To detect outstanding outliers, we use K = 0.97 for all the synthetic datasets
and K = 0.99 for the NYWomen dataset. The discovered outstanding outliers of
the synthetic datasets are shown in Figure 6. Also, during the augmentation step,
we always generate 5 (x = 6) artificial examples from each original example.

We use the LIBSVM [14] implementation for our SVM classifier. We exten-
sively compared the accuracy of both linear and polynomial SVM kernels and
found that polynomial perform consistently better. Therefore, in all experiments,

OBE: Outlier by Example 231

Fig. 6. Outstanding Outliers in the Synthetic Datasets.

we use polynomial kernels and the same SVM parameters4. Therefore, the whole
processes can be done automatically. We report the effectiveness of OBE in dis-
covering the “hidden” outliers using precision and recall measurements:

Precision =
of correct positive predictions

of positive predictions
(2)

Recall =
of correct positive predictions

of positive data
(3)

5.2 Results

Uniform dataset. Figure 7 shows the outliers detected by OBE. Although one
might argue that no objects from an (infinite!) uniform distribution should be
labeled as outliers, the objects at the fringe or corner of the group are clearly
“exceptional” in some sense. On the top row, we show the interesting outliers,
original examples and the detected results for case U-Fringe. The bottom row
shows those for case U-Corner (see Table 2 for a description of the cases). Note
that the chosen features can capture the notion of both “edge” and “corner”
and, furthermore, OBE can almost perfectly reconstruct these hidden outlier
notions!

Ellipse dataset. We simulate three kinds of interesting outliers for the ellipse
dataset: (i) the set of fringe outliers whose MDEF values are examined at a wide
range of scales, (ii) those mainly spread at the long ends of the ellipse which
display outlier-ness in two ranges of scales (from 15 to 25 and from30 to 40),
and (iii) mainly in the short ends, which do not show strong outlier-ness in the
scales from 35 to 40. The output of OBE is shown in Figure 8. Again, the features
can capture several different and interesting types of outlying objects and OBE
again discovers the underlying outlier notion!

Mixture dataset. We also mimic three categories of interesting outliers: (i) the
set of outliers scattered along the fringe of both clusters, (ii) those maily spread
along the fringe of the large cluster, and (iii) those mainly in the small cluster.
Due to space constraints, the figure is omitted here.

4 For the parameter C (the penalty imposed on training data that fall on the wrong
side of the decision boundary), we use 1000, i.e., a high penalty to mis-classification.
For the polynomial kernel, we employ a kernel function of (u ′ ∗ v + 1)2.

232 C. Zhu et al.

Fig. 7. Detection Results on the Uniform Dataset. Top row: case U-Fringe, bottom
row: case U-Corner—see Table 2 for description of each case.

Fig. 8. Detection Results on the Ellipse dataset. From top to bottom, in turn: case
E-Fringe, case E-Long, case E-Short—see Table 2 for description of each case.

NYWomen dataset. In the real dataset, we mimic three kinds of intentions
for outliers: The first group (case N-FS) is the set of consistently fast or slow
runners (i.e., the fastest 7 and almost all of the 70 very slow ones). The second
group of outlying runners (case N-PF) are those who are at least partly fast.
In this group, we discover both the fastest 23 runners and those runners who
were abnormally fast in one or two parts of the four stretches, although they
rank middle or last in the whole race. For example, one of them took 47 minutes
for the first 6.2 miles, while 91 minutes for the last 6.2 miles. The third set of
interesting outliers (case N-SS) is those who run with almost constant speed
and rank middle in the whole race. They are very difficult to perceive, but they

OBE: Outlier by Example 233

Fig. 9. Detection Results on the NYWomen Dataset. From top to bottom in turn:
Case N-FS, Case N-PF, Case N-SS—see Table 2 for description of each case. Only the
first and forth dimensions are used for the plots, although NYWomen Dataset is four
dimensional.

certainly exhibit “outlier-ness” when we examine them at a small scale. Because
of space limits, we only show the result plots in the first and forth dimensions
—see Figure 9.

For all datasets, Table 2 shows the precision and recall measurements for
OBE, using polynomial kernels (as mentioned, polynomial kernels always per-
formed better than linear kernels in our experiments). It also shows the number
of iterations needed to converge in the learning step. In Table 2, all the mea-
surements are averages of ten trials. In almost all cases, OBE detects interesting
outliers with both precision and recall reaching 80–90%. In the worst case (case
N-SS of NYWomen), it still achieves 66% precision and 70% recall. The number
of iterations is always small (less than 10).

6 Conclusion

Detecting outliers is an important, but tricky problem, since the exact notion
of an outlier often depends on the user and/or the dataset. We propose to solve
this problem with a completely novel approach, namely, by bringing the user in
the loop, and allowing him or her to give us some example records that he or
she considers as outliers.

The contributions of this paper are the following:

– We propose OBE, which, to the best of our knowledge, is the first method
to provide a solution to this problem.

234 C. Zhu et al.

– We build a system, and described our design decisions. Although OBE ap-
pears simple to the user (“click on a few outlier-looking records”), there
are many technical challenges under the hood. We showed how to approach
them, and specifically, how to extract suitable feature vectors out of our
data objects, and how to quickly train a classifier to learn from the (few)
examples that the user provides.

– We evaluated OBE on both real and synthetic data, with several small sets
of user examples. Our experiments demonstrate that OBE can succesfully
incorporate these examples in the discovery process and detect outliers with
“outlier-ness” characteristics very similar to the given examples.

Acknowledgements. The authors are grateful to Dr. Phillp B. Gibbons for
early discussion on example-based outlier detection. This research has been sup-
ported in part by Japan-U.S. Cooperative Science Program of JSPS, U.S.-Japan
Joint Seminar (NSF grant 0318547) and the Grant-in-Aid for Scientific Research
from JSPS and MEXT (#15300027, #15017207).

References

1. V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley and Sons, 1994.
2. M.M. Breunig, H.P. Kriegel, R.T. Ng, and J. Sander. Lof: Identifying density-based

local outliers. In Proc. SIGMOD Conf., pages 93-104,2000.
3. S. D. Bay and M. Schwabacher. Mining Distance-Based Outliers in Near Linear

Time with Randomization and a Simple Pruning Rule. In SIGKDD’03, August
24-27, 2003.

4. D.M. Hawkins. Identification of Outliers. Chapman and Hall, 1980.
5. T.Johnson, I. Kwok, and R.T. Ng. Fast computation of 2-dimensional depth con-

tours. In Proc. KDD, pages 224-228, 1998.
6. A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Comp.

Surveys, 31(3);264-323,1999.
7. E.M. Knorr and R.T. Ng. A unified notion of outliers: Properties and computation.

In Proc. KDD, pages 219-222, 1997.
8. E.M. Knorr and R.T. Ng. Algorithms for mining distance-based outliers in large

datasets. In Proc. VLDB 1998, pages 392-403, 1998.
9. E.M. Knorr and R.T. Ng. Finding intentional knowledge of distance-based outliers.

In Proc. VLDB, pages 211-222, 1999.
10. E.M. Knorr, R.T. Ng, and V. Tucakov. Distance-based outliers: Algorithms and

applications. VLDB Journal, 8:237-253, 2000.
11. P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection. John

Wiley and Sons, 1987.
12. S. Papadimitriou, H. Kitagawa, P.B. Gibbons and C. Faloutsos. LOCI: Fast Outlier

Detection Using the Local Correlation Integral. In Proc. ICDE, pages 315-326,
2003.

13. H. Yu, J. Han and K.Chang. PEBL: Positive Example Based Learning for Web
Page Classification Using SVM. In Proc. KDD, 2002.

14. http://www.csie.nut.edu.tw/˜cjlin/libsvm.
15. K. Yamanishi and J.Takeuchi. Discovering Outlier Filtering Rules from Unlabeled

Data. In Proc. KDD, 2001.

