
RIVA: Indexing and Visualization of

High-Dimensional Data via Dimension

Reorderings

Michail Vlachos1, Spiros Papadimitriou1,
Zografoula Vagena2, and Philip S. Yu1

1 IBM T.J. Watson Research Center, Hawthorne, NY, USA
2 IBM Almaden Research Center, San Jose, CA, USA

Abstract. We propose a new representation for high-dimensional data
that can prove very effective for visualization, nearest neighbor (NN)
and range searches. It has been unequivocally demonstrated that exist-
ing index structures cannot facilitate efficient search in high-dimensional
spaces. We show that a transformation from points to sequences can po-
tentially diminish the negative effects of the dimensionality curse, per-
mitting an efficient NN-search. The transformed sequences are optimally
reordered, segmented and stored in a low-dimensional index. The exper-
imental results validate that the proposed representation can be a useful
tool for the fast analysis and visualization of high-dimensional databases.

1 Introduction

Suppose that we are interested in performing search operations on a set of high-
dimensional data. For simplicity let us assume that the data lie in a unit hy-
percube C = [0, 1]d, where d is the data dimensionality. Given a query point,
the probability Pw that a match (neighbor) exists within radius w in the data
space of dimensionality d is given by Pw(d) = wd. Figure 1(a) illustrates this
probability for various values of w. Evidently, at higher dimensionalities the data
becomes very sparse and even at large radii, only a small portion of the entire
space is covered. This is also known as dimensionality curse, which in simple
terms translates into the following fact: for large dimensionalities existing index-
ing structures outperform sequential scan only when the dataset size (number
of objects) grows exponentially with respect to dimensionality.

In this work we propose a mapping from high-dimensional to low-dimensional
spaces that will boost the performance of traditional indexing structures—such
as R-trees—without changing their inner-workings, structure or search strategy.
This mapping will essentially condense the sparse/unused data space by group-
ing and indexing together dimensions that share similar characteristics. We will
accomplish this by applying the following transformations: i) Conceptually, we
will treat high-dimensional data as ordered sequences. ii) The original D di-
mensions will be reordered to obtain a globally smooth sequence representation.
This will lead to placement of dimensions with similar behavior at adjacent posi-
tions in the ordered representation as sequence. iii) The resulting sequences will

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
w=0.99
w=0.97
w=0.9

(a)

Dataset sample Dimensionality 2

D1 D2

(b)

Fig. 1. (a) Probability Pw(d). (b) Mapping of 25-D image features onto 2 dimensions
and correspondence of projected against original dimensions.

D dimensions

N
tu

p
le

s

partition &
average

D dimensions K dimensions

reorder index

K dimensions

Fig. 2. Summarization of steps.

be segmented into groups of K < D dimensions which can be then stored in a
K-dimensional indexing structure. The previous steps are illustrated in Figure 2.

Elements of our techniques are partially inspired by or adapted from con-
cepts in parallel coordinates visualization [4], time-series representation [9], co-
clustering and bi-clustering [8] methodologies. However, the final goal is distinct
from the previous techniques, since the focus of this work is primarily on the
indexing of high-dimensional data. We note, however, that since our approach
also relies on the efficient grouping of correlated/co-regulated attributes, the
proposed algorithms can also be utilized for the identification of the principal
data axes for high-dimensional datasets.

In Figure 1(b) we demonstrate an example of the dimension grouping and
dimensionality reduction achieved by our techniques. The dataset consists of
25-dimensional features extracted from multiple images using a 5×5 grid (more
details are provided in the experimental section). Each image belongs to one of
the following four shape classes: cube, ellipse, hexagon and trapezoid. The shapes
are drawn by humans, so they exhibit dislocations or distortions and no two im-
ages are identical. Using the proposed low dimensional projection/grouping, we
map each 25-dimensional point onto 2 dimensions. We depict the correspondence
between sets of original dimensions and each of the projected dimensions. Ob-
serve that peripheral and center parts of the image (which correspond to almost
empty pixel values) are collapsed together into one projected dimension. Simi-
larly centrally located portions of the image are also grouped together to form
the second dimension. While this example illustrates the usefulness of our di-
mension grouping techniques for image/multimedia data, we should emphasize
the utility of our methods in a number of other domains:

Table 1. Description of main notation.

Symb. Description

N Database size (number of points).
D Database dimensionality.
ti Tuples (row vectors), ti ∈ R

D.
ti(d) The d-th coordinate of ti.
T Database, as a N × D matrix.

Symb. Description

D An ordering of all D dimensions.
K Number of dimension partitions.
B Set of partition breakpoints.
Dk The k-th ordered partition.
Dk Size of Dk.

1. High-dimensional data visualization: Our technique intelligently groups
of related dimensions, leading to an efficient low-dimensional interpretation and
visualization of the original data. Our methods provide a direct mapping from
the low-dimensional space to the original dimensions, permitting more coher-
ent interpretation and decision making based on the low-dimensional mapping
(contrast this with PCA, where the projected dimensions are not readily inter-
pretable, since they involve translation and rotation on the original attributes).
2. Gene expression data analysis: Microarray analysis provides an expedient
way of measuring the expression levels for a set of genes under different regu-
latory conditions. They are therefore very important for identifying interesting
connections between genes or attributes for a given experiment. Gene expression
data are typically organized as matrices, where the rows correspond to genes and
columns to attributes/conditions. Our techniques could be used to mine either
conditions that collectively affect the state of a gene or, conversely, sets of genes
that are expressed in a similar way (and therefore may be jointly affecting certain
variables of the examined disease or condition).
3. Recommendation systems: An increasing number of companies or online
stores use collaborative filtering to provide refined recommendations, based on
the historical user preferences. Utilizing common/similar choices between groups
of users, companies like Amazon or Netflix can provide suggestions on products
(or movies, respectively) that are tailored to the interests of each individual cus-
tomer. For example, Netflix serves approximately 3 millions subscribers provid-
ing online rentals for 60,000 movies. By expressing rental patterns of customers
as an array of customers versus movie rentals, our technique could be then used
for identifying groups of related movies based on the historical feedback.

Summarizing the main contributions of this work: (i) We provide an effi-
cient abstraction that can map high dimensional datasets into a low-dimensional
space. (ii) The new space can be used to visualize the data on two (or three)
dimensions. (iii) We demonstrate how the low dimensional space can be used
in conjunction with existing indexing structures (such as R-trees) for mitigating
the adverse effect of high-dimensionality on the index search performance. (iv)
Finally, the proposed data mapping effectively organizes the data features into
logical subsets. This readily allows for efficient determination of correlated or
co-regulated data features.

2 Preliminaries

In the following sections we will describe our methodology for data reorganization
which is called ‘RIVA’ (Reordering for Indexing and VisuAlization). Assuming

a database T that consists of N points (rows) in D dimensions (columns), the
goal is to reorder and partition the dimensions into K segments, K < D. We
denote the database tuples as row vectors ti ∈ R

D, for 1 ≤ i ≤ N . The d-th value
of the i-th tuple is ti(d), for 1 ≤ d ≤ D. We begin by first defining an ordered
partitioning of the dimensions. Then we introduce the necessary measures that
characterize the quality of a partitioning, irrespective of order. Next, in Section 3
we will show how we can exploit reordering to find the partitions efficiently, with
a single pass over the database.

Definition 1 (Ordered partitioning (D,B)). Let D ≡ (d1, . . . , dD) be a to-
tal ordering of all D dimensions. The order along with a set of breakpoints
B = (b0, b1, . . . , bK−1, bK) defines an ordered partitioning, which divides the di-
mensions into K segments (by definition , b0 = 1 and bK = D + 1 always). The
size of each segment is Dk = bk − bk−1. We denote by Dk ≡ (dk,1, . . . , dk,Dk

) the
portion of D from positions bk−1 up to bk, i.e., dk,j ≡ dj−1+bk−1

, for 1 ≤ j ≤ Dk.

partition

1

2

3
4

5 se
g.

 v
ol

um
e

(k
=

2)

se
g.

 v
ol

um
e

(k
=

1)

1

2

3

45

data (D = 5)
envelope (K = 2)

reorder /

Fig. 3. K-dimensional envelopes of D-dimensional points. On the right, order is D =
(2, 5, 4, 3, 1) with breakpoints B = (1, 3, 6) and partition sizes D1 = 2 and D2 = 3.

Next, we need a measure of quality. Given a partitioning, consider a single
point ti. Ideally, we want the smallest possible variation among values of ti

within each partition Dk. Figure 3 illustrates two different partitionings and
their corresponding envelopes (dashed lines), which are simply the minimum
and maximum values of ti within each set of dimensions Dk. The partition on
the right has smaller volume.

Definition 2 (Envelope volume vi(D,B)). The envelope volume of a point
ti, 1 ≤ i ≤ N is defined by

vi(D,B) :=
∑K

k=1

(

maxd∈Dk
ti(d) − mind∈Dk

ti(d)
)

.

This is proportional to the average (over partitions) envelope width.

Definition 3 (Total volume V (D,B)). The total volume achieved by a par-

titioning is V (D,B) :=
∑N

i=1 vi(D,B)

We should point out that, although the width of an envelope segment Dk is
related to the variance within that partition, the envelope volume vi is different
from the variance (over dimensions) of ti. Furthermore, the total volume V is
not related to the vector-valued variance of all points, and hence is also not
related to the per-column variance of T, which is used in [2].

Summarizing, we shall seek a single partitioning of the dimensions for the
entire database. To that end, we would like to minimize the total volume V .

3 Reordering

In the previous section we defined the notions of an ordered partitioning and of
volume. Unfortunately, summation over all database points in V is the outermost
operation. Hence, computing or updating the value of V would require buffer
space kN for the minimum values and another kN for the maximum values, as
well as O(N) time. Since N is very large, direct use of V to find the partitioning
is infeasible. Surprisingly, we can intelligently use the dimension ordering and
recast the problem in a way that allows us to perform the search after a single
pass over the database. The reordering of dimensions is chosen to maximize
some notion of “aggregate smoothness” and serves two purposes: (i) provide an
accurate estimate of the volume V without requiring O(N) space and time, and
(ii) locate the partition breakpoints. The next sections make these ideas precise.

seg. ordered volum
e

se
g.

 v
ol

um
e

se
g.

 v
ol

um
e

1

2

3

4

1

2

3

4

(optim
al order)

seg. ordered volum
e

Fig. 4. Ordered volume for one data point, within a segment (see first segment in
Figure 5), showing exactly the two volumes. Points on the right are in optimal order
(see Lemma 1) and the ordered volume equals the “true” volume.

3.1 Volume through ordering

Consider a point ti and a partition Dk. Instead of the difference between the
minimum and maximum over all values ti(d) for d ∈ Dk, we will consider the
sum of differences between consecutive values in Dk.

Definition 4 (Ordered envelope volume v̄i(D,B)). The ordered envelope
volume of a point ti, 1 ≤ i ≤ N is defined by

v̄i(D,B) :=
∑K

k=1

∑Dk

j=2 |ti(dk,j) − ti(dk,j−1)| =
∑D

j=1

j 6∈B
|ti(dj) − ti(dj−1)|.

Figure 4 shows the ordered volumes of two different dimension orderings in
one segment. The thin double arrows show the segment’s volume. The thick
lines on the right margin show the consecutive value differences. Their sum is
the segment’s ordered volume (thick double arrow).

Lemma 1 (Ordered volume). For any ordering D, we have vi(D,B) ≤ v̄i(D,B).
Furthermore, holding B fixed, there exists an ordering D∗ for which the above
holds as an equality, v̄i(D

∗,B) = vi(D,B).

The order D∗ for which the ordered volume matches the original envelope volume
of any point ti is obtained by sorting the values of ti in ascending (or descending)
order—the full proof is ommited for space.

Definition 5 (Total ordered volume). The total ordered volume achieved

by a partitioning is V̄ (D,B) :=
∑N

i=1 vi(D,B).

3order

Dk

bk

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

63

5

7

13 6 75

1 5

6

7

1 56 7

3 2 2

5 7 9

2 2

5 7 9

4 2

8

8

4 2

1 1

8

Original order 3

8

4 2

38

84 2total

Fig. 5. One point and two total orders that correspond to the same partitioning (D = 7
and K = 3). The breakpoints bk, 0 ≤ k ≤ K are also shown, with the induced partition
sizes Dk, 1 ≤ k ≤ K. The total ordering serves two purposes. First, to make the ordered
volume within individual partitions close to the “true” volume. Second, to help us
find the best breakpoints, which minimize the envelope and total volumes. The first
reordering minimizes the sum of consecutive value differences, and achieves both goals.

Lemma 1 says that, for a given point ti, the ordering D allows estimation of the
envelope volume using the sum of consecutive value differences. Furthermore,
using a similar argument, we can show that a reordering D also helps us find
the best breakpoints for a single point, i.e., the ones that minimize its envelope
volume (see Figure 5—proof is straightforward but long and ommited for space).

Lemma 2 (Envelope breakpoints). Let D∗ ≡ (d1, . . . , dD) be the ordering of
the values of ti in ascending (or descending) order. Given D∗, let the breakpoints
b1, . . . , bK−1 be the set of indices j of the top-(K−1) consecutive value differences
|ti(dj) − ti(dj−1)| for 2 ≤ j ≤ D. Then, vi(D

∗,B∗) = v̄i(D
∗,B∗) and this is the

minimum possible envelope volume over all partitionings (D,B).

3.2 Rewriting the volume

Next, we show that optimizing for V̄ , instead of V , can be performed with only
a single pass over the database. By substituting the minimum and maximum
operations (in vi) with a summation (in v̄i), it is possible to exchange the sum-
mation order and make the summation over all points the innermost one. This
allows us to compute this quantity once, hence requiring only a single scan of
the database. First, we give a name to this sum.

Definition 6 (Dimension distance). For any pair of dimensions, 1 ≤ d, d′ ≤
D, their dimension distance is the L1-distance between the d-th and d′-th columns
of the database T, i.e.,∆(d, d′) :=

∑N

i=1 |ti(d) − ti(d
′)|.

The dimension distance is similar to the consecutive value difference for a single
point, except that it is aggregated over all points in the database. If some of
the dimensions have similar values and are correlated, then we expect their
dimension distance to behave similarly to the differences of individual points and
have a small value. If, however, they are uncorrelated, we expect their dimension
distance to be much larger. Now we can rewrite the expression for V̄ (D,B),

V̄ (D,B) =
∑N

i=1

∑D
j=1

j 6∈B
|ti(dj) − ti(dj−1)| =

∑D
j=2

j 6∈B
∆(dj , dj−1). (1)

3.3 Partitioning with TSP

With multiple points, we can no longer find the optimal ordering and break-
points via a simple sorting. However, as observed before, sorting the values in
ascending (or descending) order is equivalent to finding the order that minimizes
the envelope volume and we can still seek an optimum of V̄ . As explained in De-
finition 6, we expect the dimension distance to behave similarly to the individual
differences; it should be small for dimensions with related values and large for
uncorrelated dimensions.

Instead of optimizing simultaneously for D and B, we will first optimize for
D and subsequently choose the breakpoints in a fashion similar to Lemma 2.
Therefore, our objective function C(D) is similar to Equation (1), except that it
also includes dimension distances across potential breakpoints,

Definition 7 (TSP objective). We will optimize for the cost objective

C(D) :=
∑D

j=2 ∆(dj , dj−1), (2)

This formulation implies that ∆(d1, dD) ≥ ∆(dj , dj−1), for 2 ≤ j ≤ D.

If the last condition were not true, a simple cyclical permutation of D would
achieve a lower cost. After we have found D∗ = argmaxD C(D), we will select the
breakpoints in a fashion similar to Lemma 2, by taking the indices of the top-(K−
1) dimension distances ∆(dj , dj−1), 2 ≤ j ≤ D. This simplification of optimizing
first for D has the added benefit that we can very quickly try different values of
K. But the objective of Equation (2) is that of the traveling salesman problem
(TSP), where nodes correspond to dimensions and edge lengths correspond to
dimension distances. In Figure 6(a) the TSP tour is shown with thick lines. The
breakpoints (for K = 2) are its two longest edges (dashed thick lines). The sketch
of the RIVA algorithm is given below:

1. Scan the database once to compute the D×D matrix of dimension distances.
2. Find a TSP tour D of the D dimensions, using the above distances.
3. If necessary, rotate it to satisfy the condition in Definition 7.
4. Choose the remaining K − 1 breakpoints in B as described above.

The column reordering problem for binary matrices, which is a special case of the
desired reordering for our problem is already shown to be NP-hard [5]. Finally,
the dimension distance ∆ satisfies the triangle inequality, in which case a factor-
2 optimal of C(D) can be found in polynomial time. In practice, even better
solutions can be found quite efficiently (e.g., for D = 100, typical running time
for TSP using Concorde3 is about 3 seconds).

4 Indexing

In the previous section we outlined how to find an ordered partitioning that
makes the points as smooth as possible, with a single pass over the database.

3 http://www.tsp.gatech.edu/concorde/

d1 d2

d3

d4

d6
d5

(a)

q

2 qmindist(,)

N1
q

m
indist(,)

N1
N2

t 5 t 3

t 4

t 1

t 2
t 10

t 11

t 9

t 7
t 6

t 8

N

(b)

Fig. 6. (a) Illustration of TSP problem, (b) R-tree structure.

A natural low-dimensional representation of the points ti is the per-partition
average [9]. More precisely, we map each ti ∈ R

D into t̂i ∈ R
K defined by

t̂i(k) := 1
Dk

∑

d∈Dk
ti(d), for 1 ≤ k ≤ K.

Assume we want to index ti using any Lp norm. For 1 ≤ p ≤ ∞, we define the
lower-bounding norm ‖ · ‖lb(p) on the low-dimensional representations t̂i as

‖t̂i‖lb(p) :=
(
∑K

k=1 Dk · |t̂i(k)|p
)

1

p , if p 6= ∞, or ‖t̂i‖lb(∞) := ‖t̂i‖∞, if p = ∞.

That ‖ · ‖lb(p) is a lower-bounding norm for the corresponding Lp norm on the
original data ti is a simple extension of theorems for equal-length partitions [9].
We index t̂i using an R-tree (see Figure 6(b) for a simple 2D example), which
recursively groups points into bounding boxes (nodes). A range query prunes
nodes based on the minimum possible distance (mindist) of the query points
to any point contained within a node. NN queries are processed by depth-first
traversal and a priority queue, again using mindist. Since, ‖t̂i‖lb(p) ≤ ‖ti‖p,

computing mindist using ‖t̂i‖lb(p) guarantees no false dismissals. We chose the
partitioning (D,B) so as to make the segments as smooth as possible, therefore
we expect both the node volumes to be small. Furthermore, it is precisely the
smoothness that makes per-segment averages good summaries and ‖t̂i‖lb(p) a
good approximation of ‖ti‖p.

5 Experiments

5.1 Example for Image Data

We depict with a running example the usefulness of the dimension reordering
techniques for indexing and visualization. We utilize portions of the HHRECO

4

symbol recognition database, which consists of approximately 8000 shapes signed
by 19 users. The user strokes are rendered on screen and treated as images
(200 × 150). Since it would be unrealistic to treat each image as 200-by-150
dimensional point we perform a simple compaction of the image features as
follows: by applying a k × m grid on the image, we record only k × m values
which capture the number of pixels falling into each bucket. Using a 5×5 grid and
starting from the top left image bucket we follow a meander ordering (Figure 7)
and transform each image into a 25-dimensional point. The exact bucket ordering
technique is of little importance, since the dimensions are going to be reordered
again by our technique (therefore z- or diagonal ordering could be equally used).

4 http://www-cad.eecs.berkeley.edu/Respep/Research/hhreco/

5 10 15 20 25
0

50

100

150

200

cube ellipse

hexagon trapezoid

(black) (gray)

(green) (orange)

30 21 47

188 67 64

93 145 63

55 17 73

107 17

Original Image
Bucketization and pixel

counting Sequence mapping

k

m

k x m

Fig. 7. Left: Feature extraction from image, Right: Mapping of features as sequences.

13 2 24 2216 11 25 2120 5 10 1 6 15 4 23 3 12 17 9 19 7 14 18 8
0

50

100

150

200

13 2 24 2216 11 25 2120 5 10 1 6 15 4 23 3 12 17 9 19 7 14 18 8
0

50

100

150

200

D1 D2 D3 D1 D2 D3

After reordering After reordering & averaging

Fig. 8. Left : After dimension reordering, Right : After dimension averaging.

On the right of Figure 7 we show the originally derived 25D points for 12
images of the dataset. Figure 8 depicts the new sequences after the TSP-based
reordering and also the grouping of dimensions into 3 segments. Finally the
same figure also illustrates the averaging per group of projected dimensions.
The new projected dimensions correspond to a group of the original dimensions,
the correspondence of which is shown in Figure 10. Image regions corresponding
to empty image space are clustered together, while image portions that carry
stroke information are grouped into different segments.

Plots on projected dimensions (like Figure 8) can be very useful for summariz-
ing and visualizing high-dimensional data. This mapping resembles the parallel
coordinate technique [4]. However, our approach additionally groups, reorders
and summarizes dimensions. When the images are projected into 2 or 3 groups
of dimensions, they can also be visualized in 2D or 3D. For example, by pro-
jecting the 25D points onto 2D and placing the 12 images at their summarized
projected coordinates we get the mapping of Figure 9. One can observe that
relative distances are well preserved and similar-looking shapes (e.g., hexagons
and circles) are projected in the vicinity of each other.

Dimension 1

D
im

e
n

s
io

n
 2

0 5 10 15 20 25 30 35
40

50

60

70

80

90

100

110

120

1
2

3

4

5

6

7

8

9

1
2

3

4

5

6

7

8

9

1
2

3

4

5

6

7

8

9

1
2

3

4

5

6

7

8

9

1
2

4

5

6

7

8

9

Fig. 9. 2D image mapping.

D1 D2 D3

Dataset sample

D4

Dimensionality 2 Dimensionality 3 Dimensionality 4

Fig. 10. Correspondence between projected dimensions and portions of the image for
projected dimensionalities of 2, 3 and 4.

5.2 Application for Collaborative Filtering

We use the MovieLens database 5 which is utilized as a movie recommendation
system. The database contains ratings for 1682 movies from 943 users. We sam-
ple a smaller portion of the database, containing all the ratings for 250 random
movies and we apply our dimension (≡ movies) reordering technique. Indicative
of the effective reordering is the measurement of the global smoothness, which
is improved, since the cost function C that we are optimizing is minimized by
a factor of 6.2. We also observed very meaningful groups of movies in the pro-
jected dimensions. For example, one grouping contains action blockbuster movies
like ”Indiana Jones”, ”Empire Strikes Back” and ”Terminator”, while another
contains more action thrillers like ”Conspiracy Theory” or ”The Game”.

5.3 Indexing with R-trees

Now we quantify the performance gains of our reordering and dimension grouping
techniques on indexing structures (and specifically on R-trees). For this experi-
ment we use all the images of the HHRECO database, but we hold out 50 random
images for querying purposes. Images are converted to high-dimensional points
(as discussed before), using 9, 16, 36 and 64-dimensional features. These high-
dimensional features are reduced down to 3, 4, 5, 6 and 8 dimensions using the
proposed methodology. The original high-dimensional data are indexed in an
R-tree and their low-dimensional counterparts are also indexed in R-trees using
the modified mindist function as discussed in Section 4.

For each method we record the amount of retrieved high-dimensional data,
i.e., how many leaf records are accessed. Figure 11 displays the results normal-
ized by the total number of data. The R-tree on the original data exhibits very
little pruning power which was expected, since it operates at high dimensional-
ity. The new R-trees operating on the grouped dimensions exhibit much higher
efficiency. Notice that for 9D original dimensionality we can improve the search
performance by 78% in the best case, which happens for 6 grouped dimensions.
For 16D data a projected group dimensionality of 8 is the one that gives the
best results, which is 62% better than the pruning power of the original R-tree.
For even higher data dimensionalities, the gain from the dimension grouping
diminishes slowly but one should bear in mind that the original R-tree already
fetches approximately all of the data for dimensionalities higher than 16. An in-
teresting research direction for future work would be to examine the possibility

5 http://www.grouplens.org/

of a connection between the projected group dimensionality at which the R-tree
operates most efficiently and the intrinsic data dimensionality. Realization of
such a connection can lead to more effective design of indexing techniques.

9D 16D 36D 64D
0

0.2

0.4

0.6

0.8

1

Dataset Dimensionality

R
et

rie
ve

d
D

at
a

Rtree ND
Rtree 3D
Rtree 4D
Rtree 5D
Rtree 6D
Rtree 8D

−78% −62%

−27%
−15%

Fig. 11. Savings from using our projected grouping in conjunction with an R-tree. Data
at various dimensionalities (x-axis) are projected down to 3, 4, 5, 6 and 8 dimensions.

Concluding, the indexing experiments have demonstrated that our methods
can effectively enhance the pruning power of indexing techniques. We should also
emphasize that essentially we have only reorganized and packetized differently
the data dimensions, but we have not modified in the least in inner-workings or
the structure of the R-tree index. Additionally, since there is a direct mapping
between the grouped and original dimensions our technique has the additional
benefit of enhanced interpretability of the results.

In the future, we plan to investigate additional ways of further improving
the index performance on the new data representation. For example, in this
work the grouped dimensions include all the original dimensions. However, some
dimension groups are less important than others and therefore do not have to
be indexed, leading to further reduction in the data dimensionality. One can
see this as an analog of the largest principal components. Furthermore, such an
addition to out methodology will allow for an indirect comparison with PCA,
which is something that we also intend to explore in the immediate future.

6 Related work

Traditional clustering approaches, such as K-means, K-medoids or hierarchical
clustering focus on finding groups of similar values and not on finding a smooth
ordering, which is the main target of this work. In the mutually related fields
of co-clustering, bi-clustering, subspace clustering [1, 8] (for a detailed review,
see [7]) and graph partitioning [6], the problem of finding pattern similarities
has been explored. Among those, pCluster [8] also tries to minimize pairwise
differences, both among dimensions as well as among tuples. In general, all of
these approaches focus on clustering both rows and columns and treat them
symmetrically. In contrast, we assume an asymmetry (N � D) which makes the
solution quite different. Most of these approaches are not suitable for large-scale
databases with millions of tuples.

Mamoulis et al. [2] propose a vertical partitioning scheme for nearest neighbor
query processing, which considers columns in order of decreasing variance. As
pointed out before, our cost objective is not related to the per-column variance.
More importantly, [2] does not provide any grouping of the dimensions, and

hence is not suitable for visualization or indexing. Our dimension summarization
technique bares resemblances to the piecewice aggregate approximation (PAA)
and segment means [9]; however our scheme is more general, in that, it allows
segments of unequal size. Additionally those techniques perform no reordering,
since they are predicated on the smoothness assumption of time-series data.

In the area of high-dimensional visualization, Fastmap [3] is a popular and
fast method for dimensionality reduction and visualization. Nonetheless, it does
not provide any bounds on the distance in the low-dimensional space, and there-
fore cannot guarantee the no false dismissals claim, that is provided by our
lower-bounding criterion. Finally, our data representation can be seen as an
extension of the parallel coordinates method [4]. Our technique enriches the pre-
vious model, making visualizations more coherent and useful, not only because
it provides a much smoother representation, but because it also performs the
additional steps of dimension grouping and summarization.

7 Conclusion

We presented RIVA, a new methodology for indexing and visualizing high-
dimensional data. By expressing the data in a parallel coordinate system we
attempt to discover a dimension ordering that will provide a globally smooth
data representation. Such a data representation is expected to minimize data
overlap and therefore enhance generic index performance as well as data visual-
ization. We solve the dimension reordering problem by recasting it as an instance
of the well-studied TSP problem. Our results indicate that R-tree performance
can reap significant benefits from this dimension reorganization.

8 References

[1] C. C. Aggarwal, J. Han, J. Yang, and P. S. Yu. A framework for projected clustering
of high dimensional data streams. In VLDB, 2004.

[2] A. P. de Vries, N. Mamoulis, N. Nes, and M. L. Kersten. Efficient k-NN search on
vertically decomposed data. In SIGMOD, 2002.

[3] C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. SIGMOD, 1995.

[4] A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for visualizing multidi-
mensional geometry. In IEEE Visualization ’90, 1990.

[5] D. Johnson, S. Krishnan, J. Chhugani, S. Kumar, and S. Venkatasubramanian.
Compressing large boolean matrices using reordering techniques. In VLDB, 2004.

[6] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph parti-
tioning. In SC98, 1998.

[7] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analy-
sis: A survey. IEEE Trans. Comp. Biol. and Bioinf., 1(1), 2004.

[8] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern similarity in
large data sets. In SIGMOD, 2002.

[9] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary Lp norms. In
VLDB, 2000.

