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ABSTRACT

We introduce aCPU-adaptive algorithm for spectrum esti-
mation on continuous data. Our approach combines a fast
and intelligent load-shedding scheme with a closed form in-
cremental spectrum computation, which adapts gracefully to
the available computational resources.

1. INTRODUCTION

Several emerging applications, including network traffic mon-
itoring, financial data feeds, telemetry applications, medical
data (e.g., ECGs), etc., contain streaming data arriving athigh
rates. Stream processing systems employ a collection of data
analytic units which typically compete for available compu-
tational and memory resources. In such systems real-time
response is crucial, therefore light-weight and efficient algo-
rithms for processing and analyzing such data are highly de-
sirable. Ultimately, however, the dominating constraint is the
available system resources. Therefore, there is need for meth-
ods that can also gracefully degrade result accuracy based on
CPU or memory availability; a good-enough answer is better
than no answer at all.

Our goal is to efficiently estimate and update the peri-
odogram of a signal, within a sliding time window. For fixed-
length sequences, the periodogram can be estimated inO(n log n)
time using the FFT. For dynamically updated sequences, the
Momentary Fourier Transform (MFT) [1] can be employed to
update the estimate over a sliding window. Recently, [2] pro-
poses methods for periodicity estimation on streams, based
on retaining thek most significant Fourier coefficients. How-
ever, none of the streaming approaches address the issue of
resource adaptation.

A simple approach for load adaptation would be to sub-
sample the signal at regular intervals. However, this can lead
to data aliasing and deteriorate the quality of the estimated
periodogram. In contrast, our approach performs intelligent
subsampling (see Fig. 2), based on a linear predictor which
retains a sample only if its value cannot be predicted from its
neighbors. This scheme allows us to efficiently make on-the-
fly decisions whether to discard a sample. Furthermore, we
incorporate an estimator unit that adjusts the error tolerance
of the predictor, based on available CPU time. Our scheme
produces unevenly spaced samples. Therefore, we also in-
troduce a closed-form Fourier approximation using uneven

samples and we show how to update it incrementally. We
call our load-adaptive methodology SLIDE (Streaming and
Load-adaptive Periodicity Estimation). A schematic of our
approach is provided on Fig. 1.
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Fig. 1. Visual depiction of SLIDE.

Notation In the following, x[k] is the k-th element (k ∈
Z

+) of a discrete signal andX[m] are its DFT coefficients.
In this paper we use the periodogram of the signal as an es-
timator of the spectrum (and use the terms interchangeably).
The notationx[ki] is used for the unevenly sampled signal,
ki, i ∈ Z

+. Finally, we measure the complexity of our al-
gorithms in terms of the number of additions (subtractions),
multiplications and divisions (making the analysis indepen-
dent of the underlying processor architecture). We label the
complexity of a single multiplication asξMul, of a division as
ξDiv and of an addition/subtraction asξSub.

2. LOAD-SHEDDING SCHEME

We consider the typical problem of running spectral analy-
sis where we slide a window across the temporal signal and
incrementally update the signal’s DFT (and the respective pe-
riodogram). As the data window slides by a fixed amount, we
discardn1 points from the beginning of the signal and addn2

points to the end. However, if the available CPU cycles do
not allow us to update the DFT using all the points, we can
adaptively prune the set of added points ton̂2 using uneven
sub-sampling to meet the CPU constraint while minimizing
the impact on the accuracy of the updated DFT.

2.1. Intelligent sampling via a linear predictor

We determine if a sample can be retained based on whether
it can be linearly predicted from its neighbors. In particular,



for sampleki we compare the interpolated valuexint[ki] with
the actual valuex[ki], where

xint[ki] =
x[ki−1](ki+1 − ki) + x[ki+1](ki − ki−1)

ki+1 − ki−1
(1)

and sampleki−1 is the last retained sample before sample
ki and sampleki+1 is the immediately following sample. If
|xint[ki] − x[ki]| ≤

∆×|x[ki]|
100 we can discard the sampleki

otherwise we retain it. The parameter∆ is an adaptive thresh-
old that determines the quality of the approximation.

The complexity of this algorithm forM samples is :

ξsamp(M) = (2ξMul + 4ξSub + ξDiv)(M − 2) (2)

In Section 2.2 we discuss how to tune the threshold∆ in
order to obtain the desired number ofN samples, out of the
originalM samples.
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Fig. 2. Comparison of spectrum estimation errors for intelli-
gent sampling and equi-sampling techniques.

Fig. 2 compares the spectrum estimates for a snapshot of
a data stream, using the intelligent sampling method against a
näıve equi-sampling technique, which samples data at a spec-
ified time interval. We execute our algorithm for a specific
threshold and reduce the data points within a window from
M down toN . We estimate the resulting periodogram (see
section 3) as well the periodogram derived by equi-sampling
everyN/M points. Through the intelligent sampling one can
provide higher quality reconstruction of the periodogram,be-
cause the important data stream features are retained.

In practice, our linear interpolation and thresholding schemes
achieve good approximation of the signal, while requiring
very simple calculations. It is also possible to derive a worst
case bound of the cumulative error for each discarded sam-
ple. Letεi, i = 1, 2, . . . denote the cumulative error for the
first, second, etc, discarded samples after the last retained
one. Let i = N be the last sample we chose to discard.
Our decision at that point is based on the instantaneous er-
ror δN := x[N ] − xint [N ], i.e., we discardx[N ] if |δN | ≤
∆|x[N ]| ≤ ∆maxN

i=1 |x[i]|. By triangle similarity, it is easy
to see (Figure 3) that the worst case contribution to the cumu-
lative error of all previous discarded samples is

i∆|x[N ]|/N ≤ i∆
N

max
j=1

|x[j]|/N, fori = 1, . . . , N − 1

|x[N]|

+/−  ∆/Ν

+∆

−∆

0 1 2 N+1Ni

+/− ∆/Ν
+/− 2∆/Ν

|x[N]|

i

Fig. 3. Contribution of instantaneous error att = N to cumu-
lative error of previously discarded points.

Summing these up we get

|εi| ≤

�
∆ + i∆ �1/(i + 1) + · · · + 1/N �� max

i
|x[i]|

≈

�
∆ + i∆ �ln N − ln i�� max

i
|x[i]|

= ∆(1 + i ln(N/i)) max
i

|x[i]|

where we use the approximation
∑N

i=1
1
i ≈ lnN for the

harmonic series. This is maximized fori = N maxi |x[i]|/e
and the maximum (over all discarded samples) of the worst
case cumulative error is∆(1 + N/e). Since the sequence
is variance scaled,maxi |x[i]| is typically small and can be
ignored. This corresponds to a sequence such thatx[t] =

t
t−1 (x[t − 1] ± ∆) + x[0], for t = 2, 3, . . ..
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Fig. 4. Spectrum approximation for different threshold values

2.2. Threshold Estimator

Our goal is to predict the threshold∆ that will produce a de-
sired number of uneven samplesN during the next time win-
dow of lengthM in the future. The estimation of∆ is based
on the behaviour of the signal during the past window of same
size. Formally, letkc be the current sample at the time we



wish to readjust for available resources and letx[k : k +M −
1] :=

(

x[k], x[k+1], . . . , x[k+M−1]
)

∈ R
M be a window of

M even samples. Then, we want a mappingp : R
M ×N 7→ R

giving us the threshold∆ = p
(

x[kc − M + 1 : kc], N
)

.
However, the domainRM × N of p has excessively high

dimensionality. Our practical solution is to summarizex[k :
k + M − 1] by a small set offeatures which capture the “ir-
regularity” of the signal within that window. Formally, let
f : R

M 7→ F be a mapping from the actual window to a suffi-
ciently small feature setF ⊆ R

d, whered � M . The thresh-
old estimator we use in practice is a mappingp̂ : F×N 7→ R.
The interpolation threshold we choose is∆̂ = p̂

(

f(x[kc −

M + 1 : kc], N
)

.
The feature we use is a per-band varianceffreq. If X[m],

0 ≤ m ≤ M−1 are the DFT coefficients ofx[k : k+M−1],
then we divide the frequencies intoB bands of equal width to
obtain

ffreq �x[k : k + M − 1]� := (v0, v1, . . . , vB−1) ∈ R
B ,

wherevj :=
∑(j+1)(M−1)/B

m=j(M−1)/B+1 X2[m], 0 ≤ j ≤ B − 1.
Note that the DC coefficientX[0] is omitted fromffreq. When
B = 1, thenv0 = Var(x[k : k +M − 1]). The per-band vari-
ance provides a finer characterization of the irregularities than
just the variance. Small number of bandsB (e.g.,B = 2 or
B = 4) provide good estimators without increasing the space
complexity. These features can be incrementally maintained
over a sliding window of sizeM .

The next step is how we compute the estimatep̂. To
that end, we use a training setW := {Wj | Wj = x[ij :
ij + M − 1], 1 ≤ j ≤ w}, consisting ofw windows. We run
our algorithm on each window for several different thresholds
and get value ofN for each of them. This produces a train-
ing setT of examplesSl ∈ F × N × R, i.e., T :=

{

Sl |

Sl = (f(Wjl
), Nl,∆l), Wjl

∈ W
}

. We use the subscriptl
to identify elements ofT (1 ≤ l ≤ |T |).

We employ ak-NN (k nearest-neighbor) interpolation scheme
to estimatêp, where the neighbor distance is computed only
with respect to the featuresf(Wjl

) and the number of retained
samplesNl. More specifically, ifW := x[kc − M + 1 :
kc], thenkNN(f(W ), N) is the set ofk elementsSl ∈ T
with the smallest distances‖(f(Wjl

, Nl)−(f(W ), N)‖ from
(f(W ), N), among all elements ofT . Then

∆̂ = p̂kNN(f(W ), N) := 1
k �Sl∈kNN(f(W ),N) ∆l.

Additionally, T can also be incrementally refined over time,
by incorporating examples that haven’t been encountered dur-
ing the training phase. This can minimize the potential errors
of the threshold estimator, even under significant changes in
the stream pattern.

3. SPECTRUM ESTIMATION FOR UNEVENLY
SAMPLED SIGNALS

GivenN uneven samplesx[kn], 0 ≤ n ≤ N − 1, we estimate
the periodogram as follows. Conceptually, we first use lin-
ear interpolation (as for the sub-sampling) to reconstructthe

evenly sampled signalx[k] and then estimate the DFTX[m]
from it. However, we do not actually need to perform the
interpolation and instead, we can directly derive closed form
expressions, as in [3], for the DFT ofx[ki] as:

X[m] = �N−1
n=1 Xn[m] (3)

where, form = 1, . . . ,M − 1,

Xn[m] = 1

(kn−kn−1)(
2πm
M

)2

��x[kn−1] − x[kn]�·
· �e−j

2πmkn−1

M − e−j
2πmkn

M �+
+ j 2πm

M
�x[kn]e−j

2πmkn
M − x[kn−1]e

−j
2πmkn−1

M ��, (4)

and form = 0,

Xn[0] = 1
2
(x[kn−1] + x[tn])(kn − kn−1). (5)

Note that, whilex[ki] hasN samples, the DFT has at least
M = kN−1 − k0 samples to avoid time domain aliasing.

3.1. Incremental Spectrum Estimation for Streaming Data

A significant benefit of equation (3) is that the DFT for un-
evenly sampled signals can be evaluated incrementally. Hence,
if we shift the window (of sizeM ) such thatn1 points are dis-
carded, andn2 new points are added (i.e. we haveN+n2−n1

points), then the DFT of the signal may be updated as:

Xnew[m] = Xold[m] −�n1

n=1 Xn[m] + �N+n2−1
n=N

Xn[m] (6)

We now examine the complexity of this update. Similar to
prior analyses of FFT complexity, we do not consider the
complexity of computinge

j2πmkn
M (and the intermediate value

2πmkn

M ). The complexity of computingXn[m] is

ξ̂nz = 6ξMul + 5ξSub + ξDiv, m = 1, . . . , M − 1, (7)

ξ̂z = 2ξMul + 2ξSub, m = 0. (8)

If we defineξ̂all = (M − 1)ξ̂nz + ξ̂z, the total update com-
plexity is

ξup(M, n1, n2) = (n1 + n2)[ξ̂all + MξSub] + 2MξSub (9)

3.2. Complexity Reduction with Sub-sampling

When the window shifts, we cannot adapt the number of points
discarded (n1), however we can reduce the number of new
points added (n2) through intelligent sub-sampling. Consider
that the sub-sampling results in̂n2 samples (̂n2 ≤ n2). Com-
paring equations (9) and (2) we realize that the overall com-
plexity of updating the spectrum estimate is reduced when:

ξup(M,n1, n2) ≥ ξup(M,n1, n̂2) + ξsamp(n2) (10)

Consider a simple case whenn̂2 = n2 − 1, i.e. sub-sampling
discards one sample. The sub-sampling complexity is(2ξMul+



Dataset Threshold Window Compression (%) Error Equi-Sampling Error Intelligent Improvement (%)
ECG 20 80.96 1627.55 450.79 72.30

60 91.40 2434.59 1326.23 45.52
100 95.79 2934.84 2171.04 26.02

EEG 20 6.73 79.79 2.76 96.53
60 18.45 202.03 33.10 83.61
100 32.81 221.16 105.99 52.07

RTT 20 35.90 147.76 26.68 81.94
60 60.69 174.24 81.21 53.38
100 75.55 210.69 123.98 41.15

WebTrace 20 13.97 22.08 4.04 81.70
60 37.26 46.29 18.98 58.99
100 61.36 52.31 47.52 9.15

Table 1. Accuracy of periodogram using Intelligent and Equi-Sampling

4ξSub + ξDiv)(n2 − 2) while the decrease in the update com-
plexity is(M−1)(6ξMul+5ξSub+ξDiv)+(2ξMul+2ξSub)+
MξSub. Clearly, sincên2 < n2 ≤ M , we can easily realize
that the reduction in update complexity far outweighs the sub-
sampling complexity. In general, equation (10) is always true
when the sub-sampling reduces the number of samples (i.e
whenn̂2 < n2). If, at a certain time, the CPU imposes a com-
putation constraint ofξlimit, andξup(M,n1, n2) > ξlimit we
can determine the optimal number of samples to retainn̂2, as:

n̂2 ≤ ξlimit−ξsamp(n2)−2MξSub

(M−1)(6ξMul+5ξSub+ξDiv)+(2ξMul+2ξSub)+MξSub
− n1

(11)
We can achieve this by tuning the threshold∆ based on the
algorithm described in Section 2.2.

4. EXPERIMENTS

We examine two parameters of the resource-adaptive spec-
trum estimation: (1) The accuracy of the approximated peri-
odogram, (2) The CPU adaptiveness of our technique, which
depends on the quality of the threshold estimator. We mea-
sure the periodogram error on various datasets, and for dif-
ferent threshold values of the linear predictor. For a given
threshold, a data window of lengthM will be reduced toN
samples. We compare the quality of the approximated peri-
odogram against a rudimentary approach that performs equi-
sampling everyN/M points. The results are given in Table 1
and clearly indicate that the proposed load-shedding scheme
leads to high quality spectrum estimates. The reduction in
the estimation error compared to equi-sampling, ranges from
10% to more than 90%.
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Fig. 5. Histogram of the threshold estimator error, indicating
the cases ofoverestimated andunderestimated threshold

Next, we measure the accuracy of the threshold estimator
using streaming automotive measurements. Periodic analy-
sis is an indispensable tool in automotive industry, because
changes in the vibration pattern of an engine can provide valid
indications of an upcoming failure. We feed our adaptive
spectrum estimation unit with a synthetic CPU load, which
gives enough time to process samples in the range of
[|w|/20 . . . |w|] (where|w| = 1024 is the window length).

The threshold estimator is first trained on a small subset
of the data. We useB = 2 per-band variance features. The
accuracy of the estimator is evaluated on streaming data and
for each sliding data window the estimator error is capturedas
|N̂−N |, whereN̂ is the desirable number of retained samples
given the current CPU load andN is the actual one (based on
the selected threshold∆).

We evaluate two versions of the estimator; one that uses
1-NN interpolation and another with 5-NN interpolation. His-
tograms of the approximation error are provided on Fig. 5.
The empirical error distribution indicates that for the majority
of cases the estimation error is small. On the figure we plot
separately the cases of overestimated and the underestimated
thresholds. For 5-NN interpolation the instances of overesti-
mated threshold (fewer remaining points than expected) are
higher than the underestimated. This is more desirable since
we don’t have to resort to the additional phase of random re-
sampling.

5. CONCLUSION

We presented a spectrum estimation method that can adapt its
quality based on the CPU load. Compared to equi-sampling,
our intelligent load-shedding scheme can introduce improve-
ments on the spectrum estimation ranging from 10% to 90%.
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