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ABSTRACT samples and we show how to update it incrementally. We
We introduce aCPU-adaptive algorithm for spectrum esti- C@ll our load-adaptive methodology SLIDBt(eaming and

mation on continuous data. Our approach combines a fakt02d-adapve Peridlicity Estimation). A schematic of our

and intelligent load-shedding scheme with a closed form in@PProach is provided on Fig. 1.

cremental spectrum computation, which adapts gracefally t

the available computational resources. Examined window
1. INTRODUCTION l ‘\ MW\ Remove more points Sg?;g:;

_Se\_/eral emerging applications, including net_wor_ktraff_corm opu Loag” - o by
itoring, financial data feeds, telemetry applications, iwald [ cimaor iy S
data (e.g., ECGSs), etc., contain streaming data arrivihggat 1 —[] Insuffcient CPU i
rates. Stream processing systems employ a collection af dat 1 s o

. - - . X X Xoxran X x : —_ Spectrum Estimation
analytic units which typically compete for available compu Intelligent sampling chiida
tational and memory resources. In such systems real-time Sufieent CPU
response is crucial, therefore light-weight and efficidgba Fig. 1. Visual depiction of SLIDE.

rithms for processing and analyzing such data are highly de- . ) .
sirable. Ultimately, however, the dominating constrainthie NJcr)tatlon In the following, z[k] is the k-th element <
available system resources. Therefore, there is need fibe me Z ) Of @ discrete signal and[m] are its DFT coefficients.

ods that can also gracefully degrade result accuracy based §! this paper we use the periodogram of the signal as an es-
CPU or memory availability: a good-enough answer is bettefimator of the spectrum (and use the terms interchangeably)
than no answer at all. The notationz[k;] is used for the unevenly sampled signal,

Our goal is to efficiently estimate and update the peri%i:? € Z*. Finally, we measure the complexity of our al-
odogram of a signal, within a sliding time window. For fixed- 9°ithms in terms of the number of additions (subtractipns)
length sequences, the periodogram can be estimat@itvg n) multiplications and_d|V|5|ons (making _the analysis indepe
time using the FFT. For dynamically updated sequences, tHENt Of the underlying processor architecture). We label th
Momentary Fourier Transform (MFT) [1] can be employed toC0MPpIexity of a single multiplication &y.., of a division as
update the estimate over a sliding window. Recently, [2} pro$piv @nd of an addition/subtraction &s..-
poses methods for periodicity estimation on streams, based 2. LOAD-SHEDDING SCHEME

on retaining thé: most significant Fourier coefficients. pr— We consider the typical problem of running spectral analy-
ever, none of the streaming approaches address the issuegf \yhere we slide a window across the temporal signal and

resource adaptation. _ incrementally update the signal’s DFT (and the respective p
A simple approach for load adaptation would be 10 Subsjqjoqram). As the data window slides by a fixed amount, we

sample the signal at regular intervals. However, this cad le discardn; points from the beginning of the signal and add

to data aliasing and deteriorate the quality of the estimatepoints to the end. However, if the available CPU cycles do

periodogram. In contrast, our approach performs intaiige 1\, ajjow us to update the DFT using all the points, we can

subsampling (see Fig. 2), based on a linear predictor Whicgdaptively prune the set of added pointsitousing uneven

retains a sample only if its value cannot be predicted fram itsub—sampling to meet the CPU constraint while minimizing

neighbors. This scheme allows us to efficiently make on—thefhe impact on the accuracy of the updated DFT.
fly decisions whether to discard a sample. Furthermore, we

incorporate an estimator unit that adjusts the error toleza
of the predictor, based on available CPU time. Our schemé1-
produces unevenly spaced samples. Therefore, we also iwe determine if a sample can be retained based on whether
troduce a closed-form Fourier approximation using uneveiit can be linearly predicted from its neighbors. In partaul

Intelligent sampling via a linear predictor



for samplek; we compare the interpolated valu#![k;] with
the actual value[k;], where
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and samplek;_; is the last retained sample before sample ‘ ‘ ‘ - \f\lx[N]‘
k; and samplé; ., is the immediately following sample. If ; ; L L.
|t [k;] — 2[k;]] < 222l e can discard the sample o 1 2 ; NN
otherwise we retain it. The parameteiis an adaptive thresh- Fig. 3. Contribution of instantaneous errortat N to cumu-
old that determines the quallty of the approximation. lative error of previous|y discarded pointsl

The complexity of this algorithm fok/ samples is :
EMP(M) = (26nrur + 4€sub + Epiv) (M — 2) 2

In Section 2.2 we discuss how to tune the threshaldh
order to obtain the desired number &fsamples, out of the lei] < (A +iA(L/(E+ 1)+ + 1/N)> max |z[i]|
original A samples. !

Summing these up we get

Comparison of Periodograms ~ (A + iA (ln N —1n Z)) max ‘[I}[’L] |

Original Periodogram
— Intelligent Sampling

= A(L+ i In(N/i)) max ||

where we use the approximation,’ , 1 ~ In N for the
harmonic series. This is maximized for= N max; |z[i]|/e

and the maximum (over all discarded samples) of the worst
case cumulative error iA(1 + N/e). Since the sequence
is variance scaledpax; |z[i]| is typically small and can be
ignored. This corresponds to a sequence suchaftat=

5 (zft — 1] £ A) 4+ 2[0], fort =2,3,....

Total Error =25.2295

Total Error =50.5209

WebLog Data, T = 80, compression = 45.4795%

Fig. 2. Comparison of spectrum estimation errors for intelli- A B T SV [pogl .ty el
gent sampling and equi-sampling techniques. |
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Fig. 2 compares the spectrum estimates for a snapshot of
a data stream, using the intelligent sampling method agains Periodogram
nave equi-sampling technique, which samples data at a spec-
ified time interval. We execute our algorithm for a specific
threshold and reduce the data points within a window from
M down to N. We estimate the resulting periodogram (see

section 3) as well the periodogram derived by equi-sampling WebLog Data, T = 120, compression = 76.4354%
every N/M points. Through the intelligent sampling one can A » F x| X remmearms
provide higher quality reconstruction of the periodograe, 1 1 1 J
. . X
cause the important data stream features are retained. R\ L b W W I\ Y
x KON TIXYx % X%x X X ¥XYX %

In practice, our linear interpolation and thresholdingesobs
achieve good approximation of the signal, while requiring
very simple calculations. It is also possible to derive astor — Rier Lon Shedding "
case bound of the cumulative error for each discarded sam-
ple. Lete;, i = 1,2,... denote the cumulative error for the
first, second, etc, discarded samples after the last retaine - ]
one. Leti = N be the last sample we chose to discard.F19- 4. Spectrum approximation for different threshold values
Our decision at that point is based on the instantaneous ex- :
ror §y := z[N] — 2™ [N], i.e., we discard[N] if |dn| < 22, Threshold Estimator
Alz[N]| < Amax¥ , |z[i]|. By triangle similarity, it is easy Our goal is to predict the threshaolll that will produce a de-
to see (Figure 3) that the worst case contribution to the eumwired number of uneven sampl&sduring the next time win-
lative error of all previous discarded samples is dow of lengthM in the future. The estimation dk is based

N on the behaviour of the signal during the past window of same
iA[z[N]|/N < iA max |z[j]|/N,fori =1,...,N -1 size. Formally, lett. be the current sample at the time we

Periodogram




wish to readjust for available resources andelét: k+M —  evenly sampled signai[k] and then estimate the DEX [m)]

1] := (z[k], a[k+1], ..., z[k+M—1]) € RM beawindowof from it. However, we do not actually need to perform the
M even samples. Then, we want a mappgngR™ xN — R interpolation and instead, we can directly derive closethfo
giving us the thresholeh = p(z[k. — M +1: k., N). expressions, as in [3], for the DFT ofk;] as:
. Hovyever3 the domaimfw x N of_ P hgs excessive!y high X[m] = XV X [m] ?)
dimensionality. Our practical solution is to summarizé :
k + M — 1] by a small set ofeatures which capture the “ir- ~ Where, form =1,.... M —1,
regularity” of the signal within that window. Formally, let
f: RM — F be amapping from the actual window to a suffi- ~ X,[m] = ——1 5 — | (2[kn—1] — 2[ka])-
ciently small feature sef C R¢, whered < M. The thresh- (k"—k”’*“i Mk )
old estimator we use in practice is a mapping¥ x N — R. e T e—j%ﬂ
The interpolation threshold we chooseAs = p( f(z[k. — ks 2mmk, )
M+1:kJ],N). + 520 (lkn)e T M — alknotle T M )|, (4)
The feature we use is a per-band variaffigg,. If X[m],
0 < m < M —1 are the DFT coefficients af(k : k+M —1], ~ andform =0,
then we divide the frequencies ini®bands of equal width to
obiain fualw Xal0) = Yelko i) + el (o —ka). O
frrea (2K : k+ M —1]) := (vo,v1,...,vp-1) € RE, Note that, whilez[k;] has N samples, the DFT has at least

M = kn_1 — ko Samples to avoid time domain aliasing.
whereu; = SSUHVOID/E o g < < g, N o s ’
Note that the DC coefficienX [0] is omitted fromfueq. When 31, |ncremental Spectrum Estimation for Streaming Data

B =1, thenvy = Var(z[k : k+ M — 1]). The per-band vari- o _ ] )

ance provides a finer characterization of the irregularttian A Significant benefit of equation (3) is that the DFT for un-
just the variance. Small number of banige.g., B — 2 or evenly sampled signals can be evaluated incrementallycéjen

. . . : . if we shift the window (of sizé\l') such that:; points are dis-
B = 4) provide good estimators without increasing the SPace. rded anc, new poigts are aglded (ie. wé ?]W&n27nl
complexity. These features can be incrementally maindhinepoims)’ then the DFT of the signal may be updated as:

over a sliding window of sizé/.

The next step is how we compute the estimate To X"[m] = X m] — 0L, Xo[m] + 00027 X [m] (6)
that end, we use a training s = {W; | W; = z[i; :
i + M —1],1 < j < w}, consisting ofw windows. We run
our algorithm on each window for several different threslsol . . j2mmby . .

. - complexity of computing™ »  (and the intermediate value
and get value ofV for each of them. This produces a train- 2rmka) The complexity of computing, [m] is
ing set7 of examplesS; € F x N x R, i.e, T := {5 | Mo "
Sy = (f(W;,), Ni,Ay), Wj, € W}. We use the subscript Ene = 6Entar + 5sub + Epiv, m=1,....M—1, (7)
to identify elements of (1 <1 < |T). :

We efr¥1ploy a&-NN (k(negresﬁ—l]ei%hbor) interpolation scheme & = 2&Mut + 2sub, m=0. ®)

to estimatep, where the neighbor distance is computed only ad Y- z ;
with respect to the featurg§ 1V, ) and the number of retained F::‘ev)\:ﬁydi(;flnega” (M = 1)énz + &, the total update com

samplesN;. More specifically, ifW = z[k. — M + 1 :
k.], thenkNN(f(W), N) is the set ofk elementsS; € T EP(M,n1,m2) = (n1 + n2)[€anr + MEsus] + 2MEsuy  (9)
with the smallest distancdig f (W;,, N;) — (f (W), N)|| from

(f(W), N), among all elements &f. Then

A = psn(f (W), N) = %ZSlEkNN(f(W),N) AVE
Additionally, 7 can also be incrementally refined over time, _ _ _
by incorporating examples that haven't been encountered du¥Vhen the window shifts, we cannot adapt the number of points
ing the training phase. This can minimize the potentialrerro discarded #,), however we can reduce the number of new
of the threshold estimator, even under significant changes Points addedi(>) through intelligent sub-sampling. Consider

We now examine the complexity of this update. Similar to
prior analyses of FFT complexity, we do not consider the

3.2. Complexity Reduction with Sub-sampling

the stream pattern. that the sub-sampling resultsin samples#, < ns). Com-
paring equations (9) and (2) we realize that the overall com-
3. SPECTRUM ESTIMATION FOR UNEVENLY plexity of updating the spectrum estimate is reduced when:

SAMPLED SIGNALS ) .

. _ §P(M,ny,n2) 2 £ (M, ny,fz) + %" (n2)  (10)
Given N uneven samples[k,], 0 < n < N — 1, we estimate _ _ _ _
the periodogram as follows. Conceptually, we first use lin<Consider a simple case whén = n, — 1, i.e. sub-sampling

ear interpolation (as for the sub-sampling) to reconstituet discards one sample. The sub-sampling complexit®§s; ..+



Dataset | Threshold Window Compression (%)  Error Equi-Sampling  Error Intelligent  Improvement (%)

ECG 20 80.96 1627.55 450.79 72.30
60 91.40 2434.59 1326.23 45.52
100 95.79 2934.84 2171.04 26.02
EEG 20 6.73 79.79 2.76 96.53
60 18.45 202.03 33.10 83.61
100 32.81 221.16 105.99 52.07
RTT 20 35.90 14776 26.68 81.94
60 60.69 174.24 81.21 53.38
100 75.55 210.69 123.98 41.15
WebTrace 20 13.97 22.08 4.04 81.70
60 37.26 46.29 18.98 58.99
100 61.36 52.31 47.52 9.15

Table 1. Accuracy of periodogram using Intelligent and Equi-Sanygpl

4€sup + Epiv) (n2 — 2) while the decrease in the update com-  Next, we measure the accuracy of the threshold estimator
plexity is (M —1)(6&arui +5Esub+Epiv )+ (28w +2Esup) + using streaming automotive measurements. Periodic analy-
Mé&g,p- Clearly, sincens < no < M, we can easily realize sis is an indispensable tool in automotive industry, begaus
that the reduction in update complexity far outweighs the su changes in the vibration pattern of an engine can providd val
sampling complexity. In general, equation (10) is alwayetr indications of an upcoming failure. We feed our adaptive
when the sub-sampling reduces the number of samples (ispectrum estimation unit with a synthetic CPU load, which
whenn, < no). If, at a certain time, the CPU imposes a com-gives enough time to process samples in the range of

putation constraint of i, and¢vP (M, ny, ng) > 4mitwe  [|w|/20. .. |w|] (Where|w| = 1024 is the window length).

can determine the optimal number of samples to retajm@as: The threshold estimator is first trained on a small subset
of the data. We us® = 2 per-band variance features. The

iy < gHmI g9 (ng) —2MEsup —ny accuracy of the estimator is evaluated on streaming data and

(M —=1)(6&aru1 +5Esub+EDiv) +(2EMut +2E5ub) +MEsup 11) for each sliding data window the estimator error is captaied

|N —N|, whereN is the desirable number of retained samples
given the current CPU load arnd is the actual one (based on
the selected threshol).

We evaluate two versions of the estimator; one that uses
4. EXPERIMENTS 1-NN interpolation and another with 5-NN interpolation sHi

We examine two parameters of the resource-adaptive spe®grams of the approximation error are provided on Fig. 5.
trum estimation: (1) The accuracy of the approximated periThe empirical error distribution indicates that for the oréy
odogram, (2) The CPU adaptiveness of our technique, whichf cases the estimation error is small. On the figure we plot
depends on the quality of the threshold estimator. We megeparately the cases of overestimated and the underestimat
sure the periodogram error on various datasets, and for dithresholds. For 5-NN interpolation the instances of overes
ferent threshold values of the linear predictor. For a givermated threshold (fewer remaining points than expected) are
threshold, a data window of lengtif will be reduced taV higher than the underestimated. This is more desirablesinc
samples. We compare the quality of the approximated perwe don't have to resort to the additional phase of random re-
odogram against a rudimentary approach that performs equsampling.
sampling everyN/M points. The results are given in Table 1 5. CONCLUSION
and clearly indicate that the proposed load-shedding sehen¥e presented a spectrum estimation method that can adapt its
leads to high quality spectrum estimates. The reduction iguality based on the CPU load. Compared to equi-sampling,
the estimation error compared to equi-sampling, ranges fro our intelligent load-shedding scheme can introduce imgrov
10% to more than 90%. ments on the spectrum estimation ranging from 10% to 90%.
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