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Abstract

Data stream values are often associated with multipleas-
pects. For example, each value from environmental sensors
may have an associated type (e.g., temperature, humidity,
etc) as well as location. Aside from timestamp, type and lo-
cation are the two additional aspects. How to model such
streams? How to simultaneously find patterns within and
across the multiple aspects? How to do it incrementally in
a streaming fashion? In this paper, all these problems are
addressed through a general data model, tensor streams,
and an effective algorithmic framework, window-based ten-
sor analysis (WTA). Two variations of WTA, independent-
window tensor analysis (IW) and moving-window tensor
analysis (MW), are presented and evaluated extensively on
real datasets. Finally, we illustrate one important appli-
cation, Multi-Aspect Correlation Analysis (MACA), which
uses WTA and we demonstrate its effectiveness on an envi-
ronmental monitoring application.

1 Introduction

Data streams have received attention in different commu-
nities due to emerging applications, such as environmental
monitoring and sensor networks [7]. The data are modelled
as a number of co-evolving streams (time series with an in-
creasing length). Most data mining operations need to be re-
designed for data streams because of the streaming require-
ment, i.e., the mining result has to be updated efficiently for
the newly arrived data.

In the standard stream model, each value is associated
with a (timestamp, stream-id) pair. However, the stream-id
itself may have some additional structure. For example, it
may be decomposed into(location-id, type) ≡ stream-id.
We call each such component of the stream-id anaspect.
The number of discrete values each aspect may take is
called itsdimensionality, e.g., the type aspect has dimen-
sionality 4 and the individual dimensions are temperature,
humidity and etc. This additional structure should not be
ignored in data exploration tasks, since it may provide ad-
ditional insights. Thus the typical “flat-world view” may be

insufficient. In summary, even though the traditional data
stream model is quite general, it cannot easily capture some
important aspects of the data.

In this paper, we tackle the problem at three levels. First,
we address the issue of modeling such high-dimensional
and multi-aspect streams. We present thetensor stream
model, which generalizes multiple streams into high-order
tensors represented using a sequence of multi-arrays.

Second, we study how to summarize the tensor stream
efficiently. We generalize the moving/sliding window
model from a single stream to a tensor stream. Every ten-
sor window includes multiple tensors. Each of these tensors
corresponds to the multi-aspect set of measurements asso-
ciated with one timestamp. Subsequently, using multilinear
analysis [3] which is a generalization of matrix analysis,
we proposewindow-based tensor analysis (WTA)for tensor
streams, which summarizes the tensor windows efficiently,
using small core tensors associated with different projec-
tion matrices, where core tensors and projection matrices
are analogous to the singular values and singular vectors
for a matrix. Two variations of the algorithms for WTA
are proposed: 1)independent-window tensor analysis (IW)
which treats each tensor window independently; 2)moving-
window tensor analysis (MW)which exploits the time de-
pendence across neighboring windows to reduce computa-
tional cost significantly.

Third, we introduce an important application using
WTA, which demonstrates its practical significance. In
particular, we describeMulti-Aspect Correlation Analysis
(MACA), which simultaneouslyfinds correlations within a
single aspect and also across multiple aspects.

In summary, our main contributions are the following:

• Data model: We introduce tensor streams to deal with
high-dimensional and multi-aspect streams.

• Algorithmic framework : We propose window-based
tensor analysis (WTA) to effectively extract core pat-
terns from tensor streams.

• Application : Based on WTA, multi-aspect correlation
analysis (MACA) is presented to simultaneously com-
pute the correlation within and across all aspects.
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2 Problem Formulation
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Figure 1. window-based tensor analysis
In this section, we first formally define the notions often-

sor streamandtensor window. Then we formulate two ver-
sions of window-based tensor analysis (WTA). Recall that a
tensor mode corresponds to an aspect of the data streams.

Definition 1 (Tensor stream) A sequence ofM th order
tensorsD1 . . .Dn, where eachDi ∈ R

N1×···×NM (1 ≤ i ≤
n) andn is an integer that increases with time, is called a
tensor stream denoted as{Di | 1 ≤ i ≤ n, n→∞}.

We can consider a tensor stream is built incrementally
over time. The most recent tensor in the stream isDn. In the
environmental monitoring example, a new 2nd order tensor
(as shown in Figure 1) arrives every minute.

Definition 2 (Tensor window) A tensor windowD(n, W )
consists of a subset of a tensor stream ending at timen

with sizeW . Formally D(n, w) ∈ R
W×N1×...×NM =

{Dn−w+1, . . . ,Dn} where eachDi ∈ R
N1×···×NM .

A tensor window localizes the tensor stream into a
(smaller) tensor sequence with cardinalityW and at particu-
lar timen. The current tensor window refers to the window
ending at the current time. Notice that the tensor window
is a natural high-order generalization of the sliding window
model in data streams.

The goal ofwindow-based tensor analysis (WTA)is to
incrementally extract patterns from high-dimensional and
multi-aspect streams. In this paper, we formulate this pat-
tern extraction process as a dimensionality reduction prob-
lem on tensor windows. Two versions of WTA are pre-
sented as follows:

Problem 1 (Independent-window tensor analysis (IW))
Given a tensor windowD ∈ R

W×N1×···×NM , find the
projection matricesU0 ∈ R

W×R0 andUi ∈ R
Ni×Ri |Mi=1

such that the reconstruction error is minimized:

e =
∥

∥D −D
M
∏

i=0
×i

(UiU
T
i )

∥

∥

2

F

The core tensorY is defined asD
M
∏

i=0
×i

Ui. Intuitively,

a projection matrix specifies the “concepts” along a given

aspect/mode, while the core tensor consists of the “con-
cept” association across all aspects/modes. Note that for
2nd-order tensors (i.e., matrices), the core tensor is the di-
agonal matrixΣ of singular values.

Problem 2 (Moving-window tensor analysis (MW))
Given the current tensor windowD(n, W ) ∈
R

W×N1×···×NM and the old result forD(n − 1, W ),
find the new projection matricesU0 ∈ R

W×R0,n and
Ui ∈ R

Ni×Ri,n |Mi=1 such that the reconstruction error is

minimized:e =
∥

∥D(n, W )−D(n, W )
M
∏

i=0
×i

(UiU
T
i )

∥

∥

2

F

Finally, we illustrate a mining application using the out-
put of WTA in Section 5.

3 Window-based Tensor analysis

Section 3.1 first introduces the goal and insight of the
general window-based tensor analysis, where we point out
the importance of good initialization for the algorithm.
Next we propose two algorithms, independent-window and
moving-window tensor analysis based on different initial-
ization strategies in Section 3.2.

3.1 Iterative Optimization on windows

The goal of tensor analysis is to find the set of orthonor-
mal projection matricesUi|

M
i=0 that minimize the recon-

struction errord(D, D̃), whered(·, ·) is a divergence func-
tion between two tensors;D is the input tensor;D̃ is the

approximation tensor defined asD
M
∏

i=0
×i

(UiU
T
i ).

The principle is to optimize parameters one at a time by
fixing all the rest. The benefit comes from the simplicity and
robustness of the algorithms. An iterative meta-algorithm
for window-based tensor analysis is shown in Figure 2.

To instantiate the algorithm, three things are needed:
Initialization condition: This turns out to be the crucial
component for data streams. Different schemes for this are
presented in Section 3.2.
Optimization strategy: This is closely related to the di-
vergence functiond(·, ·). Gradient descent type of methods
can be developed in most of cases. However, in this paper,
we use the square Frobenius norm‖ · ‖2F as the divergence
function, which naturally leads to a simpler and faster it-
erated method, alternating least squares. More specifically,
line 4 of Figure 2 is replaced by the following steps:

1. ConstructDd = D(
∏

i6=d
×i

Ui) ∈ R
R0×···×Nd×···×RM

2. unfold(Dd, d) asD(d) ∈ R
Nd×(

Q

k 6=d Rk)

3. Construct variance matrixCd = DT
(d)D(d)

4. ComputeUd by diagonalizingCd
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Input :
The tensor windowD ∈ R

W×N1×···×NM

The dimensionality of the output tensorsY ∈ R
R0×···×RM .

Output :
The projection matrixU0 ∈ R

W×R0 , Ui|
M
i=1 ∈ R

Ni×Ri

and the core tensorY.
Algorithm :
1. InitializeUi |

M
i=0

2. Conduct 3 - 5 iteratively
3. Fork = 0 to M

4. FixUi for i 6= k and find theUk that

minimizesd(D,D
M
∏

i=0
×i

(UiU
T
i ))

5. Check convergence

6. Calculate the core tensorY = D
M
∏

i=0
×i

Ui

Figure 2. Iterative tensor analysis

Convergence checking: We use the standard approach of
monitoring the change of the projection matrices until it is
sufficiently small. Formally, the change oni-th mode is
quantified bytrace(

∣

∣|UT
i,newUi,old| − I

∣

∣).

3.2 Independent and moving window ten-
sor analysis

Here we first introduce independent-window tensor anal-
ysis (IW) as the baseline algorithm. Then moving-window
tensor analysis (MW) is presented that exploits the time de-
pendence structure to quickly set a good initial condition,
thereby significantly reducing the computational cost.

Independent window tensor analysis (IW)

IW is a simple way to deal with tensor windows by fitting
the model independently. At every timestamp a tensor win-
dowD(n, W ) is formed, which includes the current tensor
Dn andW − 1 old tensors. Then we can apply the alternat-
ing least squares method (Figure 2) onD(n, W ) to compute
the projection matricesUi|

M
i=0. The projection matricesUi

can, in theory, be any orthonormal matrices. For instance,
we initializeUi to be aNi×Ri truncated identity matrix in
the experiment, which leads to extremely fast initialization
of the projection matrices. However, the number of itera-
tions until convergence can be large.

Moving-window tensor analysis (MW)

MW utilizes the overlapping information of two consecu-
tive tensor windows to update variance matricesCd|

M
d=1.

More specifically, given a tensor windowD(n, W ) ∈
R

W×N1×···×NM , we haveM +1 variance matricesCi |
M
i=0,

one for each mode. Note that the current windowD(n, W )
removes an old tensorDn−W and includes a new tensorDn,
compared to the previous windowD(n− 1, W ).
Update modes 1 to M:For all but the time mode, the vari-
ance matrix is as follows:

Cold
d =

[

X

D

]T [

X

D

]

= XT X + DT D

whereX is the unfolding matrix of the old tensorDn−W

and D is the unfolding matrix of tensor windowD(n −
1, W − 1) (i.e., the overlapping part of the two consecu-
tive tensor windows). Similarly,Cnew

d = DTD + YT Y,
whereY is the unfolding matrix of the new tensorDn. As
a result, the update can be easily achieved as follows:

Cd ← Cd −DT
n−W,(d)Dn−W,(d) + DT

n,(d)Dn,(d)

whereDn−W,(d)(Dn,(d)) is the mode-d unfolding matrix of
tensorDn−W (Dn). Intuitively, the variance matrix can be
updated easily when adding or deleting rows from an un-
folded matrix, since all computation only involves the added
and deleted rows.

Updating time mode (mode 0) cannot be done efficiently
as the other modes. Fortunately, the iterative algorithm ac-
tually only needs initialization for all but one mode in order
to start. Therefore, after initialization of the other modes,
the iterated update starts from the time mode and proceeds
until convergence. This gives both quick convergence and
fast initialization. The pseudo-code is listed in Figure 3.

Input :
The new tensorDn ∈ R

N1×···×NM for inclusion
The old tensor windowDn−W ∈ R

N1×···×NM for removal
The old variance matricesCd|

M
d=1

The dimensionality of the output tensorsY ∈ R
R0×···×RM

Output :
The new variance matricesCd|

M
d=1

The projection matricesUi|
M
i=0 ∈ R

Ni×Ri

Algorithm :
// Initialize every mode except time
1. Ford = 1 to M

2. Mode-d matricizeDn−W (Dn) asDn−W,(d)(Dn,(d))
4. UpdateCd ← Cd −DT

n−W,(d)Dn−W,(d) + DT
n,(d)Dn,(d)

5. DiagonalizationCd = UdΛdU
T
d

6. TruncateUd to firstRd columns
7. Apply the iterative algorithm with the new initialization

Figure 3. Moving-window tensor analysis
(MW)

4 Performance Evaluation

Data Description SENSOR: The sensor data are collected
from 52 MICA2 Mote sensors placed in a lab, over a period
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of a month. Every 30 seconds each Mote sensor sends to
the central collector via wireless radio four types of mea-
surements: light intensity, humidity, temperature, battery
voltage. In order to compare different types, we scale each
type of measurement into zero mean and unit variance. This
calibration process can actually be done online since mean
and variance can be easily updated incrementally. Note that
we put equal weight on all measurements across all nodes.
However, other weighting schemes can be easily applied,
based on the application.
Characteristics: The data are very bursty but still corre-
lated across locations and time. For example, the measure-
ments of same type behave similarly, since all the nodes are
deployed in the same lab.
Tensor construction: By scanning through the data once,
the tensor windows are incrementally constructed and pro-
cessed/decomposed. More specifically, every tensor win-
dow is a 3-mode tensor with dimensions (W , 52, 4) where
W varies from 100 to 5000 in the experiments.

Parameters: This experiment has three parameters: 1)
Window size W: the number of timestamps included in
each tensor window. 2)Step ratio S: the number of newly
arrived tensors in the new tensor windows divided by win-
dow size W (a ratio between 0 and 1). 3)Core tensor size:
(R0, R1, R2) whereR0 is the size of time mode. IW and
MW reach the same error level1 across all the experiments,
since we use the same termination criterion for the iterative
algorithm in both cases.
Stable over time: Figure 4(a) shows the CPU time as a
function of elapsed time, where we setW = 1000, S = .2
(i.e. 20% new tensors). Overall, CPU time for both IW and
MW exhibits a constant trend. MW achieves about30%
overall improvement compared to IW, on both datasets.

The performance gain of MW comes from its incremen-
tal initialization scheme. As shown in Figure 4(b), the CPU
time is strongly correlated with the number of iterations.
As a result of MW, which reduces the number of iterations
needed, MW is much faster than IW.
Consistent across different parameter settings:

Window size: Figure 4(c) shows CPU time (in log-
scale) vs. window sizeW . CPU time is increasing with
window size. Note that the MW method achieves big com-
putational saving across all sizes, compared to IW.

Step size: Figure 4(d) presents step size vs. CPU time.
MW is much faster than IW across all settings, even when
there is no overlap between two consecutive tensor windows
(i.e., step size equals 1). This clearly shows that the impor-
tance of a good initialization for the iterative algorithm.

Core tensor size: We vary the core tensor size along the

1Reconstruction error ise(D) =
||D−D̃||2F
||D||2

F

, where the tensor recon-

struction isD̃ = D
Q

×i
(UiU

T

i
)

time-mode and show CPU time as a function of this size
(see Figure 4(e)). Again, MW performs much faster than
IW, over all sizes. Similar results are achieved when varying
the sizes of the other modes, so we omit them for brevity.

5 Application and Case study

In this section, we introduce a powerful mining applica-
tion of window-based tensor analysis,Multi-Aspect Corre-
lation Analysis(MACA). Then we present a case study of
MACA on theSENSOR dataset. Figure 5 shows two factors
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Figure 5. Case study on environmental data

across three aspects (modes): time, location, and type. In-
tuitively, each factor corresponds to a trend and consists of
a global “importance” weight of this trend, a pattern across
time summarizing the “typical behavior” for this trend and,
finally, one set of weights for each aspect (representing their
participation in this trend). More specifically, the trendsare
from projection matrices and the weights from core tensors.

Figures 5(a1,b1,c1) show the three components (one for
each aspect) of the first factor, which is the main trend. If
we read the components independently, Figure 5 (a1) shows
the daily periodic pattern over time (high activation during
the day, low activation at night); (b1) shows the participa-
tion weights of all sensor locations, where the weights seem
to be uniformly spread out; (c1) shows that light, tempera-
ture and voltage are positively correlated (all positive val-
ues) while they are anti-correlated with humidity (negative
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Figure 4. Experiments

value). All of those patterns can be confirmed from the raw
data. All three components act together scaled by the con-
stant factor 238 to form an approximation of the data.

Part of the residual of that approximation is shown as
the second factor in Figures 5(a2,b2,c2), which corresponds
to some major anomalies. More specifically, Figure 5 (a2)
suggest that this pattern is uniform across all time, without
a clear trend as in (a1); (b2) shows that two sensors have
strong positive weights while one other sensor has a domi-
nating low weight; (c2) tells us that this happened mainly at
voltage which has the most prominent weight. The residual
(i.e., the information remaining after the first factor is sub-
tracted) is in turn approximated by combining all three com-
ponents and scaling by constant -154. In layman terms, two
sensors have abnormally low voltage compared to the rest;
while one other sensor has unusually high voltage. Again
all three cases are confirmed from the data.
6 Related work

Data streams have been extensively studied in recent
years. Recent surveys [6] have discussed many data stream
algorithms. Among them, the sliding (or moving) window
is a popular model in data stream literature. Most of them
monitor some statistics in the sliding window over a single
stream using probabilistic counting techniques, while we
work with a more general notion of multi-aspect streams.

Tensor algebra and multilinear analysis have been ap-
plied successfully in many domains. Powerful tools have
been proposed, including the Tucker decomposition [9],
parallel factor analysis [4] or canonical decomposition [2].
Kolda et al. [5] apply PARAFAC on web graphs to general-
ize the hub and authority scores for web ranking through
term information. These methods usually assume static
data, while we are interested in streams of tensors. For the
dynamic case, Sun et. al [8] proposed dynamic and stream-
ing tensor analysis for higher-order data streams, but the
time aspect is not analyzed explicitly as in this paper.
7 Conclusion

In collections of multiple, time-evolving data streams
from a large number of sources, different data values are
often associated with multiple aspects. Usually, the pat-
terns changes over time. In this paper, we propose the

tensor streammodel to capture the structured dynamics in
such collections of streams. Furthermore, we introduceten-
sor windows, which naturally generalize the sliding window
model. Under this data model, two techniques, independent
and moving window tensor analysis (IW and MW), are pre-
sented to incrementally summarize the tensor stream. The
summary consists of local patterns over time, which for-
mally correspond to core tensors with the associated pro-
jection matrices. Finally, extensive performance evaluation
and case study demonstrate the efficiency and effectiveness
of the proposed methods.
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