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Abstract. The problem of outlier detection has been studied in the
context of several domains and has received attention from the database
research community. To the best of our knowledge, work up to date
focuses exclusively on the problem as follows [1]: “given a single set
of observations in some space, find those that deviate so as to arouse
suspicion that they were generated by a different mechanism.”

However, in several domains, we have more than one set of observations
(or, equivalently, as single set with class labels assigned to each obser-
vation). For example, in astronomical data, labels may involve types of
galaxies (e.g., spiral galaxies with abnormal concentration of elliptical
galaxies in their neighborhood; in biodiversity data, labels may involve
different population types, e.g., patches of different species populations,
food types, diseases, etc). A single observation may look normal both
within its own class, as well as within the entire set of observations.
However, when examined with respect to other classes, it may still arouse
suspicions.

In this paper we consider the problem “given a set of observations with
class labels, find those that arouse suspicions, taking into account the
class labels.” This variant has significant practical importance. Many
of the existing outlier detection approaches cannot be extended to this
case. We present one practical approach for dealing with this problem
and demonstrate its performance on real and synthetic datasets.

1 Introduction

In several problem domains (e.g., surveillance and auditing, stock market analy-
sis, health monitoring systems, to mention a few), the problem of detecting rare
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events, deviant objects, and exceptions is very important. Methods for finding
such outliers in large data sets are drawing increasing attention [2,3,4,5,6,7,8,9,10,11].

As noted in [1], “the intuitive definition of an outlier would be ‘an observation
that deviates so much from other observations as to arouse suspicions that it was
generated by a different mechanism’.” The traditional and—to the best of our
knowledge—exclusive focus has been on the problem of detecting deviants in a
single set of observations, i.e.,

Problem 1 (Outlier detection—single set). Given a set of objects, find these that
deviate significantly from the rest.

However, there are several important practical situations where we have two
collections of points. Consider the following illustrative example: Assume we
have the locations of two types of objects, say vegetable patches and rabbit
populations. If we consider, say, rabbit populations in isolation, these may be
evenly distributed. The same may be true for food locations alone as well as for
the union of the two sets.

Even though everything may look “normal” when we ignore object types,
there is still the possibility of “suspicious” objects when we consider them in
relation to objects of the other type. For example, a group of patches with
far fewer rabbits present in the vicinity may indicate a measurement error. A
population away from marked food locations may hint toward the presence of
external, unaccounted-for factors.

The above may be considered a “toy” example that only serves illustrative
purposes. Nonetheless, in several real-world situations, the spatial relationship
among objects of two different types is of interest. A few examples:

– Situations similar to the one above actually do arise in biological/medical
domains.

– In geographical/geopolitical applications, we may have points that represent
populations, land and water features, regional boundaries, retail locations,
police stations, crime incidence and so on. It is not difficult to think of situ-
ations where the correlations between such different objects are important.

– In astrophysics, it is well known that the distributions of different celestial
objects follow certain laws (for example, elliptical and exponential galaxies
form small clusters of one type and these clusters “repel” each other). There
are vast collections of astrophysical measurements and even single deviant
observations would potentially be of great interest.

In brief, we argue that the following outlier detection problem is of practical
importance:

Problem 2 (Cross-outlier detection). Given two sets (or classes) of objects, find
those which deviate with respect to the other set.

In this case we have a primary set P (e.g., elliptical galaxies) in which we want
to discover cross-outliers with respect to a reference set R (e.g., spiral galaxies).
Note that the single set case is always a special case, where R = P.
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However, the converse is not true. That is, approaches for the single-set prob-
lem are not immediately extensible to cross-outlier detection. First off, several
outlier definitions themselves cannot be extended (see also Section 5.1), let alone
the corresponding methods to apply the definitions and compute the outliers. In
summary, the contributions of this paper are two-fold:

– We identify the problem of cross-outlier detection. To the best of our knowl-
edge, this has not been explicitly studied in the past, even though it is of
significant practical interest. In general, an arbitrary method for the single-
set problem cannot be easily extended to cross-outlier detection (but the
opposite is true).

– We present a practical method that solves the problem. The main features
of our method are:
• It provides a meaningful answer to the question stated above, using a

statistically intuitive criterion for outlier flagging (the local neighborhood
size differs more than three standard deviations from the local averages),
with no magic cut-offs.

• Our definitions lend themselves to fast, single-pass estimation using box-
counting. The running time of these methods is typically linear with
respect to both dataset size and dimensionality.

• It is an important first step (see also Section 5.3) toward the even more
general problem of multiple-class cross-outliers (where the reference set
R may be the union of more than one other class of objects).

The rest of the paper is organized as follows: Section 2 briefly discusses related
work for the single class case, as well as more remotely related work on multiple
dataset correlations and clustering. Section 3 presents our definition of a cross-
outlier and briefly discusses its advantages. Section 4 demonstrates our approach
on both synthetic and real datasets. Section 5 discusses some important issues
and possible future directions. Finally, Section 6 gives the conclusions.

2 Background and related work

In this section we present prior work on the problem of single class outlier de-
tection. To the best of our knowledge, the multiple class problem has not been
explicitly considered.

2.1 Single dataset outlier detection

Previous methods for single dataset outlier detection broadly fall into the fol-
lowing categories.

Distribution based Methods in this category are typically found in statistics
textbooks. They deploy some standard distribution model (e.g., normal) and
flag as outliers those points which deviate from the model [4,1,12].

For arbitrary data sets without any prior knowledge of the distribution of
points, we have to perform expensive tests to determine which model fits the
data best, if any.
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Clustering Many clustering algorithms detect outliers as by-products [13]. How-
ever, since the main objective is clustering, they are not optimized for outlier
detection. Furthermore, the outlier-ness criteria are often implicit and cannot
easily be inferred from the clustering procedures.

An intriguing clustering algorithm using the fractal dimension has been sug-
gested by [14]; however it has not been demonstrated on real datasets.

Depth based This is based on computational geometry and finds different layers
of k-d convex hulls [7]. Points in the outer layer are potentially flagged as outliers.
However, these algorithms suffer from the dimensionality curse.

Distance based This was originally proposed by E.M. Knorr and R.T. Ng [8,9,10,11].
A point in a data set P is a distance-based outlier if at least a fraction β of the
points in P are further than r from it.

This outlier definition is based on a single, global criterion determined by the
parameters r and β and cannot cope with local density variations.

Density based This was proposed by M. Breunig, et al. [5]. It relies on the local
outlier factor (LOF ) of each point, which depends on the local density of its
neighborhood. The neighborhood is defined by the distance to the MinPts-th
nearest neighbor. In typical use, points with a high LOF are flagged as outliers.

This approach was proposed primarily to deal with the local density problems
of the distance based method. However, selecting MinPts is non-trivial; in order
to detect outlying clusters, MinPts has to be as large as the size of these clusters.

2.2 Multiple class outlier detection

To the best of our knowledge, this problem has not received explicit consideration
to this date. Some single class approaches may be modified to deal with multiple
classes, but the task is non-trivial. The general problem is open and provides
promising future research directions. In this section we discuss more remotely
related work.

Multi-dimensional correlations The problem of discovering general correlations
between two datasets has been studied to some extent, both in the context of data
mining, as well as for the purposes of selectivity estimation of spatial queries.
However, none of these approaches deal with single points and identification of
outlying observations.

[15] deals with the problem the general relationship of one multi-dimensional
dataset with respect to another. This might be a good first step when exploring
correlations between datasets. However, even when two datasets have been found
to be correlated as a whole and to some extent co-located in space, this method
cannot identify single outlying points.

Prior to that, [16] considers the problem of selectivity estimation of spatial
joins across two point sets. Also, [17,18] consider the selectivity and performance
of nearest neighbor queries within a single dataset.



Cross-Outlier Detection 5

Non-spatial clustering Scalable algorithms for extracting clusters from large col-
lections of spatial data are presented in [19] and [20]. The authors also combine
this with the extraction of characteristics based on non-spatial attributes by
using both spatial dominant and non-spatial dominant approaches (depending
on whether cluster discovery is performed first or on subsets derived using non-
spatial attributes). It is not clear if these results can be extended to deal with
the multiple class outlier detection problem. In the single class case, clusters of
one or very few points can be immediately considered as outliers. However, this
is not necessarily the case when dealing with multiple classes.

3 Proposed method

In this section we introduce our definition of an outlier and discuss its main
properties. Our approach is based on the distribution of distances between points
of the primary set and a reference set with respect to which we want to discover
outliers. We use an intuitive, probabilistic criterion for automatic flagging of
outliers.

3.1 Definitions

We consider the problem of detecting outlying observations from a primary set
of points P, with respect to a reference set of points R. We want to discover
points p ∈ P that “arouse suspicions” with respect to points r ∈ R. Note that
single-set outliers are a special case, where R = P.

Table 1 describes all symbols and basic definitions. To be more precise, for
a point p ∈ P let n̂P,R(p, r, α) be the average, over all points q ∈ P in the r-
neighborhood of p, of nR(q, αr). The use of two radii serves to decouple the
neighbor size radius αr from the radius r over which we are averaging.

We eventually need to estimate these quantities (see also Figure 1). We in-
troduce the following two terms:

Definition 1 (Counting and sampling neighborhood). The counting neigh-
borhood (or αr-neighborhood) is the neighborhood of radius αr, over which each
nR(q, αr) is estimated. The sampling neighborhood (or r-neighborhood) is the
neighborhood of radius r, over which we collect samples of nR(q, αr) in order to
estimate n̂P,R(p, r, α). The locality parameter is α.

The locality parameter α determines the relationship between the size of the
sampling neighborhood and the counting neighborhood. We typically set this
value to α = 1/2 (see also Section 5.1).

Our outlier detection scheme relies on the standard deviation of the αr-
neighbor count of points in the reference set R. Therefore, we also define the
quantity σ̂P,R(p, r, α) to be precisely that, for each point p ∈ P and each sampling
radius r.
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Table 1. Symbols and definitions.

Symbol Definition

P Primary set of points P = {p1, . . . , pi, . . . , pN}.
pi

R Reference set of points R = {r1, . . . , ri, . . . , rM}.
ri

N , M Point set sizes.

k Dimension of the data sets.

d(p, q) Distance between points p and q.

RP, RR Range (diameter) of each point set—e.g., RP :=
maxp,q∈P d(p, q).

NP (p, r) The set of r-neighbors of p from the point set P , i.e.,

N (p, r) := {q ∈ P | d(p, q) ≤ r}

Note that p does not necessarily belong to P .

nP (p, r) The number of r-neighbors of pi from the set P , i.e.,
nP (p, r) := |NP (p, r)|. Note that if p ∈ P , then nP (p, r)
cannot be zero.

α Locality parameter.

n̂P,R(p, r, α) Average of nR(p, αr) over the set of r-neighbors of p ∈ P, i.e.,

n̂P,R(p, r, α) :=

∑
q∈NP(p,r) nR(q, αr)

nP(p, r)

For brevity, we often use n̂ instead of n̂P,R.

σ̂P,R(p, r, α) Standard deviation of nR(p, αr) over the set of r-neighbors
of p ∈ P, i.e.,

σ̂P,R(p, r, α) :=

√∑
q∈NP(p,r) (nR(q, αr)− n̂P,R(p, r, α))2

nP(p, r)

where p ∈ P. For brevity we often use σ̂ instead of σ̂P,R.

kσ Determines what is significant deviation, i.e., a point p ∈ P
is flagged as an outlier with respect to the set R iff

|n̂P,R(p, r, α)− nR(p, αr)| > kσσ̂P,R(p, r, α)

Typically, kσ = 3.
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Fig. 1. Definitions for n and n̂. Points in the primary set P are shown with “×”
and points in the reference set R with “�”. For instance, nP(pi, r) = 4 (including
itself), nR(pi, αr) = 1, nR(p1, αr) = 6 and n̂P,R(pi, r, α) = (1+5+4+0)/4 = 3.25.

Definition 2 (Cross-outlier criterion). A point p ∈ P is a cross-outlier at
scale (or radius) r with respect to the reference set R if

|n̂P,R(p, r, α)− nR(p, αr)| > kσσ̂P,R(p, r, α)

Finally, the average and standard deviation with respect to radius r can
provide very useful information about the vicinity of a point.

Definition 3 (Distribution plot). For any point p ∈ P, the plot of nR(p, αr)
and n̂P,R(p, r, α) with n̂P,R(p, r, α)± 3σ̂P,R(p, r, α), versus r (for a range of radii
of interest), is called its (local) distribution plot.

3.2 Advantages of our definitions

Among several alternatives for an outlier score (such as max(n̂/n, n/n̂), to give
one example), our choice allows us to use probabilistic arguments for flagging
outliers.

The above definitions and concepts make minimal assumptions. The only
general requirement is that a distance is defined. Arbitrary distance functions
are allowed, which may incorporate domain-specific, expert knowledge, if desired.

A final but very important point is that distance distributions can be quickly
estimated in time that is linear with respect both to dataset sizes and dimen-
sionality. Therefore, the above definitions lend themselves to fast, single-pass
estimation algorithms, based on box-counting [21]. The only further constraint
imposed in this case is that all points must belong to a k-dimensional vector
space (either inherently, or after employing some embedding technique).



8 Spiros Papadimitriou and Christos Faloutsos

Table 2. Box-counting symbols and definitions.

Symbol Definition

C(p, r, α) Set of cells in some grid, with cell side 2αr, each fully con-
tained within L∞-distance r from point p.

Ci Cell in some grid.

cP,i The count of points from set P within the corresponding cell
Ci.

Sq
P (p, r, α) Sum of box counts (from set P ) to the q-th power, i.e.,

Sq
P (p, r, α) :=

∑
Ci∈C(p,r,α)

cq
P,i

P q
P,R(p, r, α) Sum of box count products (from sets P and R); in particular,

P q
P,R(p, r, α) :=

∑
Ci∈C(p,r,α)

cP,ic
q
R,i

Note that, Sq
P = P q−1

P,P .

The main idea is to approximate the r-neighbor counts for each point p with
pre-computed counts of points within a cell1 of side r which contains p.

In a little more detail, in order to quickly estimate n̂(p, r, α) for a point pi ∈ P
(from now on, we assume L∞ distances), we can use the following approach.
Consider a grid of cells with side 2αr over both sets P and R. Within each cell,
we store separate counts of points it contains from P and R. Perform a box count
on the grid: For each cell Cj in the grid, find the counts, cR,j and cP,j , of the
number of points from R and P, respectively, in the cell. There is a total number
of cP,j points p ∈ P ∩ Cj (counting p itself), each of which has cP,j neighbors
from R. So, the total number of R neighbors over all points from P in Cj is
cP,jcR,j . Denote by C(p, r, α) the set of all cells in the grid such that the entire
cell is within distance r of pi. We use C(p, r, α) as an approximation for the
r-neighborhood of pi. Summing over all these cells, we get a total number of
P-R pairs of PP,R(p, r, α) :=

∑
Cj∈C(p,r,α) cP,jcR,j . The total number of objects is

simply the sum of all box counts for points in P, i.e., S1
P(p, r, α)

n̂P,R(p, r, α) =
P 1

P,R(p, r, α)
S1

P(p, r, α)

1 In practice, we have to use multiple cells in a number randomly shifted grids and
use some selection or voting scheme to get a good approximation; see [21] for more
details.
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A similar calculation can be done to estimate

σ̂P,R(p, r, α) =

√√√√P 2
P,R(p, r, α)
S1

P(p, r, α)
−

(
P 1

P,R(p, r, α)
S1

P(p, r, α)

)2

4 Experimental results

In this section we give examples of our method and discuss some important
observations related to our approach, as well as the problem in general.

Gap In this case (see Figure 2, top row) the primary set consists of 340 points
with a uniformly random distribution within a square region. In single-set outlier
detection (R = P) some fringe points are flagged with a positive deviation (i.e., at
some scale, their neighbor count is below the local average). Also, a few interior
points in locally dense regions are flagged with a negative deviation.

In cross-outlier detection, we use a reference set R of 1400 points, again
uniformly random in a slightly larger square region, but with a central square
gap. As expected, the points of P that fall within well within the gap of R are
detected as cross-outliers with a positive deviation. Also, very few2 other points
are flagged.

Core In this case (see Figure 2, middle row), the primary set again consists of
300 points with a uniformly random distribution within a square region. The
single-set outliers are similar to the previous case.

In cross-outlier detection, we use a reference set R of 250 points uniformly
random within a central square “core.” As expected again, the points of P that
fall within the reference “core” are all detected as outliers. Also, some fringe
points are still detected as outliers (see Section 4.1).

Lines The primary set P consists of 100 points regularly spaced along a line
(Figure 2, bottom row). The single-set outliers (P = R) consist of eight points,
four at each end of the line. Indeed, these points are “special,” since their dis-
tribution of neighbors clearly differs from that of points in the middle of the
line.

In cross outlier detection, the reference set R consists of two lines of 100
points each, both parallel to P and slightly shifted downward along their common
direction. As expected, the points at the bottom-left end of P are no longer
outliers, with respect to P. Note that the same four points along the top-right
end are flagged (see discussion in Section 4.1).

2 Since R is significantly denser than P, this is expected.
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Fig. 2. “Plain” outliers (left, R = P) and cross-outliers (right). The reference
set is shown with square, gray points in the right column. Outliers are marked
with larger, red points in each case. In all cases, α = 1/4.



Cross-Outlier Detection 11

−40 −20 0 20 40

−
40

−
20

0
20

40

Absolute Deviation (3σ̂: 30/993)

x

y

−40 −20 0 20 40

−
40

−
20

0
20

40

Absolute Deviation (3σ̂: 69/993)

x

y

Fig. 3. “Plain” outliers (left, R = P) and cross-outliers (right) for the galaxy
datasets. In all cases, α = 1/4.

Galaxy The primary set consists of a section with 993 spiral galaxies and the
reference set of a section with 1218 elliptical galaxies, both from the Sloan Digital
Sky Survey (Figure 3). Although not shown in the figure, all cross-outliers are
flagged with a negative deviation (except two at the very edge of the dataset).
Also (see Figure 4 and Section 4.1) all are flagged by a narrow margin. This
is indeed expected: elliptical galaxies form clusters, intertwined with clusters of
spiral galaxies. The distribution is overall even (as evidenced by the consistently
wide standard deviation band); however, a few of the elliptical galaxies are within
unusually dense clusters of spiral galaxies.

4.1 Observations

Fringe points The points located along the fringes of a data set are clearly
different from the rest of the points.

One could argue that outlier definitions such as the one of the depth-based
approach [7] rely primarily on this observation in order to detect outliers. Our
method goes beyond that and can also capture isolated central points (as can be
seen, for example, from the Gap example), but can still distinguish fringe points.

With respect to pairwise distances upon which our approach is based, the
first observation is that fringe points have fewer neighbors than interior points.
More than that, however, all neighbors of fringe points lie on the same half-plane.
It is a consequence of this second fact that the standard deviation of neighbor
counts is (comparatively) smaller at certain scales for fringe points.

This explains why in the Core example more fringe points are detected as
cross-outliers than in Gap. The reference set in Gap is chosen to cover a slightly
larger region than the primary set in order to illustrate this point. The fringe
points of P in Gap are not fringe points with respect to R: they have R-neighbors
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Fig. 4. Distribution plot for cross-outliers in Galaxy. The horizontal axis is scale
(or, sampling radius r). The solid line is n̂P,R(p, r, α) and the dashed line is
nR(p, α). The gray bands span ±3σ̂P,R(p, r, α) around the average. The galaxy
on the right is flagged with positive deviation, the other two with negative. All
are flagged at small scales by a narrow margin.

on all sides of the plane. However, the fringe points of P in Core have R-neighbors
only on one half-plane. Thus, the fringe points of P in Core are indeed different
than the interior points (always with respect to R).

Role of each distribution In this paragraph we further discuss the sampling
and counting neighborhoods. In particular, the former contains points of the
primary set P, while the latter of the reference set R. Thus, the distribution of
points in both sets plays an important role in cross-outlier detection (but see
also Section 5.1).

This explains the fact that in Lines the same four endpoints are flagged as
cross-outliers. We argue that this is a desirable feature. First, the points near the
top-right end that are closer to R are indeed less “distinct” than their neighbors
at the very end. This fact depends on the distribution of P, not R! Furthermore,
consider extending P toward the top-right: then, neither of the endpoints are
suspicious (whether surrounded or not by points of R). This, again, depends on
the distribution of P! Indeed, in the latter case, our method does not detect any
outliers.

Digging deeper As hinted in the discussion of the results, the sign of the deviation
can give us important information. However, we can go even further and examine
the distribution plots, which we discuss very briefly here. Figure 5 is included as
an example. We can clearly see that a point within the gap belongs to a sparse
region (with respect to R). Moreover, we can clearly see that the point within the
gap is flagged by a much wider margin and at a wider range of scales, whereas a
fringe point is marginally flagged. Thus, the distribution plots provide important
information about why each point is an outlier, as well as its vicinity.



Cross-Outlier Detection 13

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

30
0

Point within core

r

C
ou

nt
s

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

30
0

Point outside core

r

C
ou

nt
s

Fig. 5. Distribution plot for cross-outliers in Core. Again, the horizontal axis is
scale (or, sampling radius r). The solid line is n̂P,R(p, r, α) and the dashed line
is nR(p, α). The gray bands span ±3σ̂P,R(p, r, α) around the average.

5 Discussion

In this section we first discuss why the problem of cross-outlier detection is
different from the single-set case, even though the two may, at first, seem almost
identical. We also discuss some directions for future research. These relate to the
fast, single-pass estimation algorithms that our definitions admit.

5.1 Differences to single class outlier detection

The intuitive definition of [1] implies two important parts in any definition of
an outlier: what is considered a deviation (i.e., where or how we look for them)
and how do we determine significant deviations. Therefore, all outlier definitions
employ a model for the data and a measure of correlation, either explicitly or
implicitly.

The first difference in the case of cross-outliers follows directly from the
problem definition. What we essentially estimate is not a single probability dis-
tribution or correlation, but either some (conditional) probability with respect
to the reference set or the covariance among sets. However, several of the existing
definitions do not make their model assumptions clear or employ a model that
cannot be easily extended as described above. These outlier detection approaches
are hard to modify.

It should be noted that our definition employs a very general and intuitive
model which is based on pairwise distanced and makes minimal assumptions.

The second major difference again follows from the fact that we are dealing
with two separate sets. Simply put, in the “classical” case (R = P), we can
obviously assume that a point set is co-located in space with respect to itself.
However, this need not be the case when R 6= P. This assumption is sometimes
implicitly employed in outlier definitions.
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Tools such as that of [15] are useful here as a first step to determine the
overall spatial relationship between the two sets. It must further be noted that,
in our approach, the locality parameter α is tunable and typically two values
should be sufficient: α ≈ 1/2 (or 1) and any α ≤ rmin/ max{RP, RR} where rmin

is the smallest distance between any two points (irrespective of type)3.

5.2 Efficiency considerations

Our definitions are based on pairwise distance distributions. As demonstrated
in [15,21], these can be estimated very quickly with a single pass over the data, in
time that is practically linear with respect to both data set size and dimension-
ality. The only minor restriction imposed by these algorithms is that α = 1/2k

for some integer k.
Furthermore, if we have more than two classes of points, the pre-processing

step for box counting can be modified to keep separate counts for each class. This
does not increase computational cost (only space in proportion to the number of
classes) and allows fast outlier detection where the reference set R is the union
of points from several classes (rather than a single class).

5.3 Generalizations

The observation in the last paragraph of the previous section naturally leads to
the problem of multi-class outlier detection. As pointed out, the fast algorithms
can easily detect outliers when the reference set R is any given combination of
classes, without incurring any extra computational cost.

An interesting future research direction is to extend these algorithms with
heuristic pruning approaches (e.g., similar to those in association rule4 algo-
rithms [22]; in our case, items correspond to point classes) to efficiently search
the entire space of all class combinations (i.e., pointset unions) in the place of
R.

6 Conclusions

In this paper we present the problem of cross-outlier detection. This is the first
contribution; we argue that this is a non-trivial problem of practical interest and
certainly more than an immediate generalization. We discuss several aspects of
the problem that make it different from “classical” outlier detection. The former
is a special case of cross-outliers (with R = P) but the converse is not true.

Beyond introducing the problem, we present a method that can provide an
answer. Furthermore, our definitions use a statistically intuitive flagging crite-
rion and lend themselves to fast, single-pass estimation. We demonstrate our
approach using both synthetic and real datasets.
3 The second choice for α formally implies that, at every scale, the sampling neigh-

borhood completely covers both datasets.
4 This is one potential approach; regions with no co-located classes can probably be

ignored. Of course, this far from exhausts all possible pruning techniques.
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