AutoL ag: Automatic Discovery of Lag Correlationsin Stream Data

Yasushi Sakurai *
NTT Cyber Space Laboratories
sakurai . yasushi @ab. ntt. co.jp

1 Introduction

Data streams appear in multiple settings, such as envi-
ronmental, medical and socioeconomic systems. There are
many, fascinating research problems in such settings, like
clustering [1], summarization [3], and forecasting [2].

We focus on a less-studied problem, namely to automat-
ically determine whether a sequence X follows another se-
quence Y, with an unknown lag [, which we need to deter-
mine on the fly. The criterion is based on the correlation
coefficient p(l). Recall that the correlation coefficient p(1)
for lag [between two time sequences X = {z1,...,2,}
and Y = {y1,...,yn} of equal length n, is defined as fol-
lows:

i1 (@ = 2) (Y1 —)

- n — n—I1 _
Vi @ =)7 0 (e — 9)?
n n—l
_ 1 _ 1
=0 > o y:mzyt
t=1

t=Il+1

p(l)

ey

where Z, y denote the mean of X and Y, respectively. We
are interested in high absolute values of p(1).

Definition 1 (Lag Correlation) We say that two sequences
X and Y have a lag correlation of /, and specifically that X
lags Y by lag , if the absolute value |p(1)| of the correlation
coefficient between x; and y;_; is above a threshold ~, say
~v = 0.4, and this is the global maximum, or the earliest
local maximum, if more maxima exist.

We choose the earliest local maximum, to account for two
periodic signals lagging each other.

If X and Y were static, the problem would be trivial:
compute the CCF (cross-correlation function) p(l) (I =
1,2,...) and report the smallest lag [for which the CCF
is maximized. When X and Y continuously increase in
length, the problem is challenging. We want a method
which will monitor X and Y, and, whenever the user wants,
the method should determine (a) whether there is a lag cor-
relation, and (b) if yes, the value ! of the lag. We propose

*This work was done while this author was visiting Carnegie Mellon
University.

Spiros Papadimitriou
Carnegie Mellon University
spapadi m@s. chu. edu

Christos Faloutsos
Carnegie Mellon University
chri st os@s. cru. edu

AutoLag, a lag capture method for two data streams. Auto-
Lag has dramatically better performance (in terms of speed
and memory), while it maintains excellent accuracy.

2 AutolLag

As just mentioned, if we had infinite space and time, the
problem would have the following straightforward solution:

Naive Solution At time n, access all the values of X and
Y, estimate p(l) for all values of the lag [(= 0,1, ...), and
choose the maximum absolute value above +, or report that
there is no lag correlation.

Our solution is based on three major steps, each described
next. The first step towards a streaming solution is the ob-
servation that, for a fixed lag [, we can update the correla-
tion coefficient p(l) incrementally. Specifically, if we want
to estimate the correlation coefficient p(0) of two time se-
quences x; and y; (t = 1,...,n) at time n, we can do that
incrementally, by keeping track of the count (n), the sum of
x; values, the sum of squares xf, the sum of products x,y;,
and the sum and sum of squares of the y; values. These five
numbers are enough to estimate the correlation coefficient
p(0) for lag I = 0. For any desirable value of the lag [,
we just need to keep track of the corresponding 5 numbers,
which we shall refer to as “sufficient statistics.”

For the second step towards a streaming solution, we
propose an approximation: Instead of computing p(l) for
every possible value of the lag [, we propose to keep track
of only a geometric progression of lag values: (= 0,1, 2, 4,
..., 20 ..., and do interpolation for the rest. We obtained
good results with cubic splines, but the choice of interpo-
lation method is orthogonal to our approach, and, in fact,
other interpolation methods may give even better results.
The justification for our geometric progression idea is that
it is necessary to achieve sub-linear space and time require-
ments, while we expect that the loss in accuracy will be
small, if we are interested in the relative error of the lag.
The intuition is that our method will give good accuracy
for small [, exactly because for small values of the lag [we
have many points to interpolate; it may give a larger error
for large lag [, but the relative error will probably be small.

Value

0.00 Naive -
AutoLag
-050 Approximation

0 20000 40000 BODOD ©000D 100000
Time.

05

Correlation

0.0

1.00 -0.5

Value

0.00 0 5000 10000 15000
Lag

0 20000 40000 GODDD B0D0D 1DDODD
Time.

Figure 1. Estimation of the correlation coeffi-
cients (CCF) for Sines.

However, there is still a subtle point: we still need to
have a window of values that is as large as the largest lag
lmaz that we want to be able to detect. This is prohibitive,
since [,,q, grows with time. We propose to solve this prob-
lem with an approximation: Instead of operating on the
original time sequences, we also compute their smoothed
version, by computing the means of non-overlapping win-
dows. The window widths will be powers of 2, although any
other number would be acceptable, too. Let X be the orig-
inal time sequence, and X, be its smoothed version with
windows of length 2. We refer to h as the “level” of the
approximation. That is, X (¢) is the original sequence; X
consists of n/2 ticks, with the pair means; X has n/4 ticks,
with the quadruplet means, and so on. At time n, we need
O(logn) levels; for each level, we compute the sufficient
statistics. Formally we have p(l) =~ p1(l/2), and in general

p(l) = pu(l/2"))

where pp,() is the correlation coefficient of the h-level
smoothed sequences, and pg() = p(). It turns out that, for
smooth input sequences, the error is small. In retrospect, it
makes sense: if the input sequences are smooth, they won’t
be affected too much by our smoothing through window-
means.

3 Experiments

To evaluate the effectiveness of AutoLag, we performed
experiments on real and synthetic datasets. Each synthetic
sequence has additive white noise. We compared AutoLag
with the naive implementation. AutoLag can keep more
than one coefficient for each level to improve the accuracy.
We used 16 coefficients for each level. We performed our
experiments on an Intel Xeon 2.8GHz with 1GB of mem-
ory, running Linux.

Figure 1 shows the estimation of AutoLag for Sines. In
this figure, “Naive” denotes the exact correlation coeffi-
cients computed by the naive implementation. “Approxima-
tion” means the correlation coefficients computed from the

Datasets Lag correlation Estimation
Naive | AutoLag | error (%)

Snes 3410 3412 0.059
SpikeTrains 2841 2829 0.422
TwoSpikes | 10408 10436 0.269
Temperature 1632 1622 0.613
Kursk 2698 2688 0.371
Sunspots 1156 1168 1.038

Table 1. Estimation error of lag correlations.

Sequence | Wall clock time (ms) Speed-up
Length Naive | AutoLag
le+04 0.0256 0.00038 67:1
le+05 0.2896 0.00053 546:1
le+06 3.0520 0.00061 5003:1
le+07 29.8844 0.00071 42090:1

Table 2. Wall clock time as a function of se-
quence length.

smoothed version. AutoLag interpolates the missing values
between these correlation coefficients. This figure shows
that AutoLag closely approximates the correlation coeffi-
cients. Table 1 shows that the estimation error of captured
lag correlations. The experiments demonstrate clearly that
AutoLag detects the correct lag perfectly most of the time.
The largest relative error was about 1 %.

Table 2 compares AutoLag and the naive implementa-
tion in terms of the wall clock time under varying sequence
length n. The wall clock time is the average of processing
time to update sufficient statistics and detect lag correlations
for each time tick. AutoLag achieves a dramatic reduction
in computation time. Specifically, AutoLag is up to about
42,000 times faster than the naive implementation.

4 Conclusions

We have introduced the problem of automatic lag cor-
relation detection on streaming data and proposed AutoLag
to address this problem by using careful approximations and
smoothing. Our experiments on real and realistic data show
that AutoLag works as expected, estimating the unknown
lags with excellent accuracy and significant speed-up. In
our experiments on real and realistic data, AutoLag was up
to about 42,000 times faster than the naive implementation,
with at most 1% relative error.

References

[11 S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and prac-
tice. IEEE TKDE, 15(3):515-528, 2003.

[2] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive,
hands-off stream mining. VLDB, pages 560-571, Sept. 2003.

[3] Y. Zhu and D. Shasha. Statistical monitoring of thousands of
data streams in real time. VLDB, pages 358-369, Aug. 2002.

