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Abstract

This paper addresses the task of change analysis of cor-
related multi-sensor systems. The goal of change analysis is
to compute the anomaly score of each sensor when we know
that the system has some potential difference from a refer-
ence state. Examples include validating the proper perfor-
mance of various car sensors in the automobile industry. We
solve this problem based on a neighborhood preservation
principle — If the system is working normally, the neigh-
borhood graph of each sensor is almost invariant against
the fluctuations of experimental conditions. Here a neigh-
borhood graph is defined based on the correlation between
sensor signals. With the notion of stochastic neighborhood,
our method is capable of robustly computing the anomaly
score of each sensor under conditions that are hard to be
detected by other naive methods.

1 Introduction

Knowledge discovery from data streams is one of the
major research topics in data mining. In recent years, grow-
ing attention has been paid to mining techniques from mul-
tivariate time series data, which are naturally represented as
a stream of weighted graphs [7, 11, 13, 12]. In such a graph,
each node corresponds to each time series, and each edge is
weighted by the (dis)similarity between a pair of time se-
ries.

One of the typical tasks of stream mining is change (or
anomaly) detection. Change detection is an unsupervised
learning task, which aims at deciding on whether the data
generating mechanism has been changed or not. When
considering multivariate systems, however, more advanced
tasks involving anomaly or change detection are also of im-
portance. After detecting a change, we are generally in-
terested in which variables (or, more generally, degrees of
freedom) are responsible for the change. We call this step
change analysis.

In this paper, we address the problem of change analysis
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Figure 1. Problem setting. We wish to com-
pute the anomaly score of each sensor in a
target run (b) using a reference data set (a).

of multivariate time-series data. One motivating applica-
tion is the task of sensor validation, where sensor signals
are inspected for detecting proper operation. Our assump-
tion about the input data is as follows: (1) The signals are
highly dynamic, so a different experimental run can have a
completely different trend (see Fig. 1). (2) The signals are
heterogeneous, i.e. a mixture of seemingly different types of
signals. (3) There can be strong correlations between sig-
nals, so that individual analysis of each sensor can overlook
interesting anomalies. (4) Supervised information about the
behavior of each sensor is generally not given. Thus, we
need to treat the problem in an unsupervised learning fash-
ion.

Note that the highly dynamic nature makes it impossible
to use existing alignment techniques [1, 8, 9] over different
runs to compute theanomaly score, which represents how
much a variable is responsible for the difference from a ref-
erence state. Thus, instead of making direct alignment with
corresponding variables, we focus on the (dis)similarity be-
tween signals in the same run. In other words, we wish to
perform change analysis based on complete graphs whose
weights are defined by the (dis)similarities between signals.



This paper solves this task using a notion ofneighbor-
hood preservation: Under normal system operation, the
neighborhood graph of each node is almost invariant against
the fluctuations of experimental conditions. In particular,
we compute the anomaly scores by stochastically evaluating
how much this assumption is broken. Focusing only on lo-
cal structures of the graph, this principle works surprisingly
well even for data of the heterogeneous nature, where global
approaches such as principal component analysis [10] are
clearly less useful. To the best of our knowledge, this is
the first work which successfully solves the change analy-
sis task for highly dynamic, correlated, and heterogeneous
sensor data.

The layout of this paper is as follows. Section 2 pro-
vides the problem setting rather formally. Section 3 defines
an anomaly metric. Section 4 presents some experimental
results, including a real-world task of car sensor validation.
Finally, Section 5 summarizes the paper.

2 Problem setting and overview

In this section, we formalize the problem, and introduce
the key concept of neighborhood preservation.

2.1 Correlation anomaly analysis

Consider a dynamic system havingN physical sensors
such as pressure, acceleration, and luminance sensors. Each
sensor produces real-valued time-series data withT time
points (see Fig.1). We call such a data unit an experimen-
tal run. We assume that the measurements are done syn-
chronously with a fixed frequency. In a single run, letx

(t)
i

be the observation of thei-th sensor (i = 1, 2, ..., N ) at a
time indext (t = 1, 2, ..., T ). Let D andD̄ ∈ R

N×N be the
dissimilarity matrices of target and reference runs, respec-
tively. By thinking ofD andD̄ as weight matrices of graphs,
our problem is stated as follows.

Definition 1 (Correlation anomaly analysis) Given a tar-
get graph withD and a reference graph with̄D, provide the
score of each node which accounts for the difference be-
tween the graphs.

Hereafter we use the bar ()̄ to represent the corresponding
quantity of a reference run. We denote the(i, j) element of
D (D̄) by di,j (d̄i,j), representing the dissimilarity between
thei-th andj-th signals.

This problem can be easily extended to an online change
analysis by thinking of̄D andD as dissimilarity matrices
at two different times. Even in this scenario, our implicit
assumption is that the same sensors are used in any run.

For the definition of the dissimilarities, we make use of
the correlation coefficients, and take an “inverse”. Specif-
ically, given the correlation coefficients{ai,j}, we define

di,j so as to satisfy the following conditions. (1)di,i = 0
for ∀i, (2) di,i ≈ 0 for highly-correlated pairs, and (3)
di,i → ∞ for almost uncorrelated pairs. Here it is impor-
tant to understand the difference between the second and
the third conditions. A large correlation coefficient should
be thought of as a representation of the internal structure of
the system, so it should be treated carefully. On the other
hand, a value of small correlation coefficients is considered
to carry no useful information of the system. Hereafter, we
take a simple definition ofdij = − log |ai,j |. As usual,ai,j

is defined byci,j/
√

ci,icj,j , where

ci,j ≡ 1

T

T
∑

t=1

[x
(t)
i − 〈xi〉][x(t)

j − 〈xj〉],

and〈xi〉 ≡ 1
T

∑T

t=1 x
(t)
i . For constant signals, we define

ai,j = δi,j , whereδi,j is the Kronecker’s delta function.

2.2 The principle of neighborhood preservation

We define thel-th nearest neighbor (NN) to a nodei as
the one that has thel-th smallest dissimilarity toi (except
for i itself). We also define thek-NN set w.r.t. i as the
collection of the 1st, 2nd, ...,k-th NNs toi, and denote by
Ni. Now let us define thek-neighborhood graph of thei-th
node as follows:

Definition 2 (k-neighborhood graph) The k-
neighborhood graph of thei-th node is a graph that
containsNi and thei-th node itself, connected with edges
between thei-th node and its neighbors.

In this definition, we call thei-th node the central node of
thek-neighborhood graph.

As described in the introduction, one of the basic as-
sumptions of ours is that multi-sensor systems, such as au-
tomobiles and artificial satellites, include pairs of highly
correlated sensors. Otherwise, the change analysis problem
would be trivial since it can be solved by analyzing each
sensor separately. From Fig. 1, one might think that the
fluctuations of sensor signals is so strong that the change
analysis is extremely challenging. However, our observa-
tion shows that most of the unimportant fluctuations in a
highly dynamic system are due to weakly correlated pairs of
sensors. Conversely, highly correlated pairs of sensors tend
to be hardly affected by the change in experimental condi-
tions, under normal system operation. These observations
lead to the following principle.

Definition 3 (Neighborhood preservation principle) If
the system is working normally, the neighborhood graph
of each node is almost invariant against the fluctuations of
experimental conditions.
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Figure 2. Flowchart of our method for com-
puting anomaly scores.

Figure 2 summarizes our implementation of this princi-
ple. The key of our approach is to use stochastic neighbor-
hood graphs. In particular, we use a probability distribution
p(j|i), which represents a coupling probability between the
i- andj-th sensors.

3 Stochastick-neighborhood graph

The neighborhood preservation principle suggests that
the change in thek-neighborhood graph around thei-th
node should be related to the anomaly score of thei-th sen-
sor. In this section, we describe how to evaluate the change.

3.1 Stochastic nearest neighbors

LetNi andN̄i be thek-NN sets w.r.t. thei-th node in tar-
get and reference runs, respectively. To quantitatively eval-
uate the change between thek-neighborhood graphs, we in-
troduce the coupling probability of thej-th node with the
i-th node, and denote byp(j|i). For eachi, the normaliza-
tion condition is given by

p(i|i) +
∑

j∈Ni

p(j|i) = 1, (1)

where we assumep(j|i) = 0 if j /∈ Ni andj 6= i. Note
that we have included the self-coupling probabilityp(i|i)
here. This term corresponds to the probability that the cen-
tral node has no coupling with its neighbors.

To determinep(j|i), consider the following problem:
Under the condition that the central nodei takes a con-
stant number of couplings with neighbors on average, con-
struct the neighborhood graph as compact as possible. Here
it is helpful to consider the case where all the neighbors
are equal. In this case, the distribution may bep(j|i) =
1
k
(1 − δi,j). For this distribution, the conditional entropy

Hi ≡ −
∑

j∈i∪N i

p(j|i) ln p(j|i)

is readily calculated asln k. Thus theperplexity, which is
defined byeHi , is justk. This example shows that the per-
plexity is a probabilistic counterpart of the number of near-
est neighbors1.

Since the compactness of the neighborhood graph
around thei-th node is naturally represented by

〈di〉 ≡
∑

j∈Ni

di,jp(j|i),

which is the expectation of dissimilarity aroundi, we can
get the distributionp(j|i) by solving the following opti-
mization problem

min〈di〉 s.t. eHi = const. and Eq. (1). (2)

By introducing Lagrange’s multipliers forHi and Eq. (1),
and by differentiating w.r.t.p(j|i), we finally get

p(j|i) =
1

Zi

e
−

dij

σi , (3)

where the partition functionZi is defnined by

Zi ≡ 1 +
∑

l∈Ni

e
−

dil
σi . (4)

The multiplierσi is to be determined by the condition about
the perplexity. Otherwise, one may includeσi in the defini-
tion of di,j so thatσi = 1.

3.2 Anomaly score

Now we have distributionsp(j|i) andp̄(j|i) for test and
reference runs, respectively. According to the neighborhood
preservation principle, the difference between the follow-
ing quantities should be small if the system is working nor-
mally.

ei(Ni) ≡
∑

j∈Ni

p(j|i) (5)

ēi(Ni) ≡
∑

j∈Ni

p̄(j|i). (6)

Clearly,ei measures the tightness of the coupling between
the central node and its neighbors in a target run in terms
of probability. Also,ēi(Ni) measures the tightness of the
coupling around thei-th node in a reference run using thek-
NN set defined in the target set (i.e. not necessarily the same
as thek-NN set of the reference data). For definingēi(Ni)
(as well asei(N̄i)), we assume one-to-one correspondence
of sensor identities between target and reference runs.

1In the context of stochastic neighborhood graph, this fact was first
pointed out by Hinton and Roweis [6].



Similarly, by replacingNi with N̄i, ei(N̄i) and ēi(N̄i)
can be defined. Here it is easy to see

0 ≤ ei ≤
k

k + 1
. (7)

The same holds for̄ei. The lower bound is obtained when
thei-th node is totally uncorrelated to others, and the upper
bound is obtained when the nodes are perfectly correlated.

Using the tightnesses, we define the anomaly score of the
i-th node as

E ≡ max
{

|ei(Ni) − ēi(Ni)| ,
∣

∣ei(N̄i) − ēi(N̄i)
∣

∣

}

. (8)

We call this theE-scorehereafter. Note that the E-score
is given by the difference between probabilities, having the
same bound as Eq. (7). This feature makes interpretation of
the E-score very clear.

3.3 Properties of E-score

Role of p(i|i). Our formulation of the neighborhood graph
is capable of naturally discounting such nodes that are al-
most uncorrelated with any of the others. Sincedi,j ≪ 1
for j 6= i in such a case, the self-coupling probabilityp(i|i)
dominates the others. As a result, the E-score will be al-
ways negligible. This feature provides robustness over the
highly dynamic nature of data, and contrasts with previous
stochastic formulations of neighborhood [6, 5], where self-
coupling terms are not included.
Choosing parameters. The only input parameter of our
approach isk (the number of NNs). In theory,k should be
chosen as the minimum size of tight clusters. While opti-
mally determiningk from the data is a challenging research
issue [14], a value of two or three was turned to work well
in our applications.
Complexity. For computing the dissimilarity matrix and
thek-neighborhood graphs, the complexities areTN2 and
kN2 times, respectively. IfN is approximately more than
O(103), a fast method for computing the dissimilarity ma-
trix andk-neighborhood graphs will be needed. However,
such an issue is out of scope of this paper, and naive direct
computation suffices in applications explained in the next
section.

4 Experiments

In this section, we demonstrate the utility of our ap-
proach using real-world data. Note that there is no standard
method of change analysis which can handle such data that
have the four features explained in the introduction.
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Figure 3. Averaged E-scores for k = 3.

4.1 Car sensor validation

In this experiment, we focus on picking up sensor misin-
stallation errors. For example, some acceleration sensors
has a small cubic shape, so that, say, thez-axis might be
installed as they-axis by human error. Since misplaced sig-
nals themselves can be still active, and their mean and vari-
ance may remain almost the same, errors of this type are
extremely hard to detect by the human eye.

Data Set.Sensor signals were collected from embedded
sensors of an automobile running on the street, in collabo-
ration with an automaker. Several instances of the sensor
signals were shown in Fig. 1. As shown, the trend of each
signal in one run can be completely different from another
run. We excluded inactive signals to useN = 61 signals
for change analysis. We generated test (i.e. faulty) and ref-
erence runs by splitting long data stored in a database, so
that each run has about one minute length. Before analy-
sis, the data is resampled so that all of the time series have
the same time interval of 0.2 seconds (soT ≈ 300). We
performed change analysis over 11 types of misplacement
errors. For each error, we had 25 reference-target pairs.

Analysis. Figure 3 compares the average scores between
faulty and normal sensors for the 11 error patterns. Each of
the bars is the mean of the 25 reference-target pairs. We
fixedσi = 1 to avoid numerical instabilities, and setk = 2.
We also computed the averaged standard deviation (com-
puted as the square root of the averaged variance) of cor-
rectly working sensors. As shown, we have a clear con-
trast between faulty and normal ones even when considering
the standard deviations. Considering the fact that the upper
bound of the E-score is23 for k = 2, we see that some of the
error patterns almost attain the upper bound. This means
that the sensor misplacement error completely changes the
neighborhood graphs.

To look at the result in more detail, we picked one of the



k=1

sensor index

k=2

k=3

k=4

k=10

0

0.5

0.5

0.5

0.5

0.5

0

0

0

0

k=1

sensor index

k=2

k=3

k=4

k=10

0

0.5

0.5

0.5

0.5

0.5

0

0

0

0

Figure 4. The k-dependence of the E-scores.
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Figure 5. Sammon maps for a reference-target
pair of the second error pattern. (a) The ref-
erence and (b) target data.

25 reference-target pairs in the second error pattern, which
marks the worst contrast in Fig. 3, and showed the E-scores
in Fig. 4 for differentks. From the names of sensors, the
misplaced signals seem to come from a single three-axis
acceleration sensor. Despite the fact that this is picked from
the worst cases, the misplaced sensors (highlighted with the
rectangle of dashed line) are clearly pinpointed by excep-
tionally high E-scores whenk ≤ 4.

We visualized this reference-target pair using Sammon
map [2] in Fig. 5, where the misplaced sensors are marked
with ‘+’, ‘ ×’, and ‘∗’. We see that the ‘+’ sensor is almost
isolated from others in the reference data, but it gets into a
tightly connected cluster in (b). Close inspection shows the
size of this cluster is five, which explain why the E-score
graph is robust withink ≤ 4 in Fig. 4. Comparing between
the two maps, we also see that the result of embedding is not
stable at all. In other words, the global structure of the data
manifold is quite vulnerable to the fluctuation. This result
clearly supports our neighborhood preservation strategy.
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Figure 6. A part of raw time-series data of the
LightSensor data ( x10, x13, x14, and x16).

4.2 LightSensor data

So far we have based on batch-style scenarios. This sub-
section presents an application of our method to online sen-
sor data analysis.

Data set.The LightSensor data [4] is a subset of the gar-
den data set [3], containingN = 48 sensor signals recorded
at the UC Botanical Garden in Berkeley. The sensors are
installed in a single redwood tree, and placed at 4 different
altitudes in the tree, where they collect luminance values
once every 5 minutes. We split this data set into four non-
overlapping subsets withT ≈ 2, 000, as shown in Fig. 6,
where one tic corresponds to 5 minutes. In the figure, only
x10, x13, x14, andx16 signals are shown out of the 48 sig-
nals. We took the first part (from zero through 2,000 tics)
as the reference, and studied the time dependence of the E-
scores.

As shown in Fig. 6, the signals have approximately 24-
hour periodicity. This is because the luminance is almost
zero at night. However, even during the daytime, climate
changes and other random factors also affect the values of
luminance. Since climate changes are at random, deciding
on the sensor state is not easy even when a sensor signal
outputs some very low value; it would be almost impossi-
ble only by looking at individual sensors separately. Thus
focusing on correlation anomaly will be a reasonable ap-
proach.

Analysis. While detailed information about what was
happening when the measurement was done is not available,
some of the sensors seem to be dying towards the end of the
data, according to Fig. 6. The overall trend would be that
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Figure 7. Time dependence of the E-score for
the LightSensor data.

the signals are relatively regular in earlier periods while out
of shape in later periods. Our goal is to pick up this trend in
terms of the E-score. Since the signals are quite noisy, early
detection is challenging.

Figure 7 shows E-score graphs at different periods. We
usedk = 3 andσi = 1. We see that the E-scores exhibit
interesting time dependence. As expected, several sensors
takes very high scores (almost attain the upper bound of 3/4)
in the last period. Interestingly, the 16th sensor takes a very
high score also in Fig. 7 (c). This anomaly is hard to detect
just by looking at individual sensors, showing the utility of
our method.

5 Summary

We have formulated a task of change analysis of corre-
lated sensor signals. This task can be viewed as one that
account for the difference between two weighted graphs,
whose weights are computed based on the correlation be-
tween the signals. We showed that the neighborhood preser-
vation principle makes the algorithm surprisingly robust
over the variability of time series data. In addition, the
anomaly score can be related to a probability value by
introducing coupling probabilities between nodes in ak-
neighborhood graph. Finally, we demonstrated the utility
our approach using real-world data.
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