
Hiding in the Crowd: Privacy Preservation on Evolving Streams through
Correlation Tracking

Feifei Li‡ Jimeng Sun§ Spiros Papadimitriou† George A. Mihaila† Ioana Stanoi†
‡Boston University,§Carnegie Mellon University,†IBM T.J.Watson Research Center

lifeifei@cs.bu.edu, jimeng@cs.cmu.edu,{spapadim, mihaila,irs}@us.ibm.com

Abstract

We address the problem of preserving privacy in streams,
which has received surprisingly limited attention. For static
data, a well-studied and widely used approach is based on
random perturbation of the data values. However, streams
pose additional challenges. First, analysis of the data hasto
be performed incrementally, using limited processing time
and buffer space, making batch approaches unsuitable. Sec-
ond, the characteristics of streams evolve over time. Conse-
quently, approaches based on global analysis of the data are
not adequate. We show that it is possible to efficiently and
effectively track the correlation and autocorrelation struc-
ture of multivariate streams and leverage it to add noise
which maximally preserves privacy, in the sense that it is
very hard to remove. Our techniques achieve much better
results than previous static, global approaches, while re-
quiring limited processing time and memory. We provide
both a mathematical analysis and experimental evaluation
on real data to validate the correctness, efficiency, and ef-
fectiveness of our algorithms.

1. Introduction

Recently, there has been an increasing concern regarding
privacy breaches, especially those involving sensitive per-
sonal data of individuals [14]. As a result, restrictions and
regulations in publishing sensitive personal data have been
tightened [38]; these address data owned by government or-
ganizations [29] as well as corporations [7]. It is therefore
not surprising that the data management community has be-
come increasingly focused on ways to guarantee the privacy
of sensitive data.

Meanwhile, unprecedented massive data from various
sources are providing us with great opportunity for data
mining and information integration. Unfortunately, the pri-
vacy requirement and data mining applications pose ex-
actly opposite expectations from data publishing [14, 36].
The utility of the published data w.r.t the mining appli-
cation decreases with increasing levels of privacy guaran-
tees [23]. Previous work has noticed this important trade-
off between privacy and utility and various techniques have

been proposed to achieve a desired balance between the two
[3, 22, 26, 10, 12, 27, 35, 15].

Prior related work [3, 2, 22, 19] consists of additive
random perturbation for the offline, conventional relational
data model, where the noise is distributed along the prin-
cipal components of the original data in order to achieve
maximum privacy, given a fixed utility. We show that these
offline algorithms are no longer optimal when applied to
numerical, non-stationary (or, time-evolving) data streams.
The dynamic correlations and autocorrelations, if not care-
fully considered, may allow for the reconstruction of the
original streams.

Guaranteeing data privacy is especially challenging in
the case of stream data [6, 28], mainly for two reasons:
1) Performance requirement: The continuous arrival of
new tuples prohibits storage of the entire stream for analy-
sis, rendering the current offline algorithms inapplicable.
2) Time evolution: Data streams are usually evolving, and
correlations and autocorrelations [33, 24] can change over
time. These characteristics make most offline algorithms
for static data inappropriate, as we show later.

To the best of our knowledge, privacy preservation on
streams has not yet been addressed in the literature, despite
the wide use of data streams in a large range of sensitive ap-
plications such as financial, retail, defense, and health care.
For example, consider two financial firms that would like to
collaboratively monitor clusters over their streaming real-
time transactions [39]. However, none of them is willing to
publish the original data streams. The best resolution is to
find ways to guarantee both the utility and privacy of data
in an online fashion. The scheme should general and not
restricted to any specific mining operation.

In this paper we fill the gap in the area of data stream
privacy, by proposing efficient online streaming algorithms
that guarantee the privacy of single or multiple non-
stationary data streams. This work focuses on numerical
data streams, such as environmental sensor data, perfor-
mance measurements, or stock trading prices. Our goal is to
insert random perturbation that “mirrors” the streams’ sta-
tistical properties, in an online fashion. A number of impor-

Symbol Description
v a vector (lowercase bold)
v(i) thei-th element of vectorv
X a matrix (uppercase bold)
XT the transpose ofX
Xi or Xj i-th row orj-th column ofX
X

j
i the entry(i, j) of X

T the number of timestamps up to now
N the number of streams
A original stream collection inRT×N

A
∗ the perturbed stream collection

Ã the reconstructed stream collection
An then-th stream
At the values from all streams at timet
E the random noise inRT×N

D(A, A∗) the discrepancy on original and perturbed streams

Table 1. Description of notation.

tant mining operations can still be performed, by controlling
perturbation magnitude. However, the original data streams
cannot be reconstructed with high confidence.

To the best of our knowledge, our work is the first to pro-
vide the basic building blocks sufficient for a general solu-
tion for privacy of numerical streams. More specifically, we
focus on the fundamental cases of correlation across multi-
ple streams and of autocorrelation within one stream.
Our contributions are: 1) define the notion of utility and
privacy for perturbed data streams, 2) explore the effect of
evolving correlations and autocorrelation in data streams,
and their implications in designing additive random per-
turbation techniques, 3) design efficient online algorithms
under the additive random perturbation framework, which
maximally preserve the privacy of data streams given a fixed
utility while, additionally, better preserving the statistical
properties of the data, and 4) provide both theoretical argu-
ments and experimental evaluation to validate our ideas.

The rest of the paper is organized as follows:
Section 2 introduces definitions and problem formulation
and Section 3 discusses the related work. Section 4 studies
privacy preservation for multiple streams through correla-
tion tracking. Section 5 further exploits the autocorrelation
property to preserve privacy. Finally, the experimental eval-
uation on real data streams is performed in Section 6.

2. Preliminaries

2.1 Data Stream Model

Our model assumes that the input consists of multiple
continuous streams. Without loss of generality, we may as-
sume that each tuple consists of a single attribute. Further-
more, we assume that all streams are resampled to a com-
mon rate, which is between the arrival rate of the fastest and
the slowest stream. The common sampling rate can be cho-
sen based on arrival rate, data characteristics and available
processing capacity—details are beyond the scope of this
paper. Subsequently, any standard resampling technique

[30, 18] can be applied such as, for example, linear interpo-
lation (for upsampling) or decimated moving average (aka.
tumbling average, for downsampling). We will thus assume
a time granularity such that, during each time interval, there
is exactly one recorded incoming value from each stream.

Therefore, for the purposes of our analysis and without
loss of generality, the input consist ofN data streams, de-
noted asA1, . . . ,AN . For anyi-th data streamAi, its value
at timet is Ai

t. The stream collection is written asA = [Ai

for 1 ≤ i ≤ N]. Formally, the stream collectionA can be
considered as aT × N matrix whereN is the number of
streams andT is the current timestamp, which grows indef-
initely. The values from all streams at timet areAt ∈ R

N ,
i.e.,t-th row ofA.

2.2 Discrepancy, Utility and Privacy

To ensure privacy of streaming data, the values of in-
coming tuples are modified by adding noise. We denote the
random noise asE ∈ R

T×N where each entryEi
t is the

noise added to thei-th stream at timet. Therefore, the per-
turbed streams areA∗ = A+E. Without loss of generality,
we assume the noise has zero mean.
Discrepancy:To facilitate the discussion on utility and pri-
vacy, we define the concept ofdiscrepancyD between two
versions of the data,A andB, as the normalized squared
Frobenius norm1,

D(A,B) :=
1

T
‖A− B‖2

F , whereA,B ∈ R
T×N .

Utlity: Considering the perturbed versus the original data,
the larger the amplitude of the perturbation (i.e., the vari-
ance of the added noise), the larger the distortion of the
original values. However, as the distortion increases, the
usefulness of the data decreases: a larger distortion hides
the original values better but it also hides more informa-
tion about their relationships. The discrepancyD(A,A∗)
between original and perturbed data measures precisely the
squared distortion. We naturally define the utility to be the
inverse of this discrepancy. However, throughout the paper,
we typically use discrepancy, since the two are essentially
interchangeable.
Privacy: Distorting the original values is only part of the
story. We also have to make sure that this distortion can-
not be filtered out. Thus, to measure the privacy, we have
to consider the power of an adversary in reconstructing
the original data. Specifically, suppose thatÃ are the re-
constructed data streams obtained by the adversary, in a
way that will be formalized shortly. Then the privacy is
the discrepancy between the original and the reconstructed
streams, i.e.,D(A, Ã).

1The squared Frobenius norm is defined as‖A‖2

F
:=

P

i,j(A
j
i)

2

2.3 Problem Formulation

We formulate two problems: data reconstruction and
data perturbation. From his side, the adversary wants to
recover the original streams from the perturbed data.

Problem 1 (Reconstruction). Given the perturbed streams
A∗, how to compute the reconstruction streamsÃ such that
D(A, Ã) is minimized?

In this paper, we focus on linear reconstruction meth-
ods which have been used by many existing works [22, 19,
26, 10]. Intuitively, the adversary can only use linear trans-
formations on the perturbed data, such as projections and
rotations, in the reconstruction step.

Definition 1 (Linear reconstruction). Given the perturbed
streamsA∗, the linear reconstruction is̃A = A∗R, such
thatD(A, Ã) is minimized

If both the perturbed streamsA∗ and the original streams
A are available, the solutioñA can be easily identified us-
ing linear regression. However,A is not available. There-
fore, in order to estimatẽA, some additional constraints or
assumptions must be imposed to make the problem solv-
able. A widely adopted assumption [21] is that the data
lie in a static low dimensional subspace (i.e, global correla-
tion exists). This is reasonable, since if no correlations are
present, then i.i.d. perturbations are already sufficient to ef-
fectively hide the data. However, real data typically exhibit
such correlations. In this paper, as we will formally show
later, we rely on the dynamic (rather than static) correlations
among streams, as well as on dynamic autocorrelations.

From their side, data owners want to prevent the recon-
struction from happening.

Problem 2 (Perturbation). Given the original streamsA
and the desirable discrepancy thresholdσ2, how to obtain
the perturbed streamsA∗ such that 1)D(A,A∗) = σ2 and
2) for any linear reconstructioñA, D(A, Ã) ≥ σ2.

Perturbationhas exactly the opposite goal from there-
construction. However, the correlation and autocorrelation
properties of the streams are still the keys in the solution of
both problems, as shown later.

3. Related Work

Privacy preserving data mining was first proposed in [3]
and [2]. This work paved the road for an expanding field,
and various privacy preservation techniques have been pro-
posed since. These methods apply to the traditional rela-
tional data model, and can be classified as data perturbation
[3, 2, 26, 10, 15, 4],k-anonymity [23, 35, 1, 27, 38] and se-
cure multiparty computation [25, 37]. Our work focuses on
privacy preservation in the context of the randomized data

perturbation approach and we will focus on discussing re-
lated work in this area.

Data perturbation can be further classified in two groups:
retention replacement perturbation [4, 15] and data value
perturbation [3, 26, 10]. For each element in a columnj,
the retention replacement perturbation retains this element
with probabilitypj and with probability1 − pj replaces it
with an item generated from the replacing p.d.f. on this col-
umn. This approach works for categorical data as well, and
it has been applied to privacy preserving association min-
ing [15]. Our work focuses on numerical data value per-
turbation. Initial solutions in this category, [3, 2], proposed
adding random i.i.d. noise to the original data and showed
that, with knowledge of the noise distribution, the distribu-
tion of the original data can be estimated from the perturbed
data, and aggregate values are preserved. In [22, 19] the au-
thors pointed out that adding random i.i.d. noise is not op-
timal for privacy preservation. They showed how to recon-
struct the original data (individual data values) using Spec-
tral Filtering (SF) or the equivalent PCA method. The main
conclusion is that random noise should be distributed along
the principal components of the original data, so that linear
reconstruction methods cannot separate the noise from the
original data. Motivated by this observation and in similar
spirit, [10] proposed the random rotation technique for pri-
vacy preserving classification and [26] proposed data per-
turbation based on random projection. The work of [14]
discussed a method to quantify the privacy breach for pri-
vacy preserving algorithms, namelyα − β analysis orγ-
amplification. The basic idea is that, on the perturbed data,
the adversaries’ knowledge measured by their confidence
about a given property of the original data should not be
increased more than a certain amount. The work in [5] con-
sidered the problem of setting the perturbation parameters
while maintainingγ-amplification.

All these techniques have been developed for the tradi-
tional relational data model. There is no prior work on pri-
vacy preservation on data streams, except the work on pri-
vate search over data streams [31, 8]. However, the goal
there is to protect the privacy of the query over data stream,
not of the data stream itself. Finally, our data perturbation
techniques rely on PCA for data streams w.r.t both correla-
tions and autocorrelations. Streaming PCA and eigenspace
tracking of correlations (but not autocorrelation) among
multiple data streams has been studied in [32, 17].

4. Privacy with Dynamic Correlations

We first give the insight behind our data perturba-
tion and reconstruction methods, then present methods for
correlation-based noise perturbation and reconstruction.

Insight and intuition Let us first illustrate how the per-
turbation and reconstruction work in detail (see figure 1(a)

A t

At*

At
~

Projection
error

Removed
noise

Remaining
noise

Privacy
Principal
Direction

σ2

(a) noise decomposition

−30 −20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20
blue: original data, grean: perturbed data

Stream A
1

S
tr

ea
m

 A
2

w
1

(b) i.i.d random noise

−30 −20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

Stream A
1

S
tr

ea
m

 A
2

blue: original data, green: perturbed data

w
1

(c) correlated noise

Figure 1. Impact of Correlation on Perturbing the Data

for the visualization). For the perturbation process, the
stream measurementsAt at time t, represented as anN -
dimensional point, are mapped to the perturbed measure-
mentsA∗

t with discrepancyσ2. For any reconstruction ef-
fort, the goal is to transform the perturbed measurements,
A∗

t ontoÃt so that, hopefully,D(At, Ãt) is small.
A principled way of reconstruction is to project the data

onto the principal component subspace [19] such that most
noise is removed, while the original data are maximally pre-
served, i.e, not much additional error is included. The idea
is illustrated in figure 1(a). WhenA∗

t is projected onto the
principal direction, the projection is exactly the reconstruc-
tion Ãt. Note that the distance betweenA∗

t andÃt consists
of two parts: 1)removed noise, i.e., the perturbation that is
removed by the reconstruction and 2)projection error, i.e,
the new error introduced by the reconstruction. Finally, the
distance betweenAt andÃt, i.e., the privacy, comes from
two sides: 1)remaining noise, i.e, the perturbation noise
that has not been removed, and 2)projection error.

When the noise is added exactly along the principal di-
rection, theremoved noisebecomes zero. However, addi-
tional projection erroris included. In this case, the pertur-
bation is robust towards this reconstruction attempt, in the
sense thatD(A, Ã) = D(A,A∗). In general, a good prac-
tice is to add correlated noise following the trends presentin
the streams. Consider the example shown in Figure 1 where
blue points represent the original data and green points rep-
resent the perturbed data with same amount of noise. Figure
1(b) and 1(c) show the i.i.d. noise and the correlated noise
on the same data, respectively. Clearly, correlated noise has
been successfully “hidden” in the original data and, there-
fore, is hard to remove.

Data streams often present strong correlations and these
correlations change dynamically [39, 33, 32]. Consider the
examples in figure 2, where the principal components are
changing over time. In such case, online PCA is necessary
to better characterize the evolving, local trends. Global,of-
fline PCA will fail to identify these important properties
as we will show later in the experiments. Next, we will
show how to dynamically insert noise using online correla-
tion tracking [32].

0

1000

2000

−40
−20

0
20

−20

−15

−10

−5

0

5

10

15

20

Time tStream A
1

S
tr

e
a

m
 A

2

w
1

w
2

(a) Example one.

0
10

20
30

40

−2

−1

0

1

2
−1

−0.5

0

0.5

1

Time t
A

1
: sin(t)+noise

A
2
:
co

s(
t) w

1

w
2

w
3

(b) Example two.

Figure 2. Dynamic correlations in Data
Streams

Algorithm 1 : SCAN

Input : Original tupleAt, utility thresholdσ2

Old subspaceU ∈ R
N×k,Λ ∈ Rk × k

Output : Perturbed tupleA∗
t, new subspaceU,Λ

update eigenvectorU, eigenvalueΛ based onAt)

Initialize δ, η to
⇀

0 k

//add noise in top-k principal component subspace
for 1 ≤ i ≤k do

δ(i)=σ2 × Λ(i)
‖(Λ)‖

η(i) = gaussian noise with varianceδ(i)
// rotation back to the original space
Et=η × UT andA∗

t=At+Et

Streaming Correlated Additive Noise (SCAN) SCAN
does two things whenever new tuples arrive from theN in-
put streams: 1) update the estimation of local principal com-
ponents; and 2) distribute noise along the principal compo-
nents in proportional to their eigenvalues.

An important property of the SCAN algorithm is that
when the noise is rotated back to the data space (line 6), its
variance will be equal to the specified discrepancy thresh-
old σ2. Intuitively, SCAN tracks the covariance matrix and
adds noise with essentially the same covariance as the data
streams—proof details are ommited for space.

Theorem 1. At any time instantT , the perturbed data

Algorithm 2 : SCOR

Input : Perturbed tupleA∗
t, utility thresholdσ2

Old subspaceU ∈ R
N×k,Λ ∈ Rk × k

Output : Perturbed tuplẽAt, new subspaceU,Λ
update eigenvectorU, eigenvalueΛ based onAt)1

//project to the estimated online principal components2

Ât=A∗
t × UN×k × UT

N×k

streamsA∗ from SCAN satisfyD(A,A∗) = σ2. Addition-
ally, SCAN preserves the eigenvectors of the (uncentered)
covariance matrix ofA.

Therefore, the SCAN perturbation will not affect any
mining algorithms that rely on the second moments of the
data (i.e., linear correlations).

Streaming correlation online reconstruction (SCOR):
The privacy achieved by SCAN is determined by the best
linear reconstruction an adversary could perform onA∗ (see
Section 2.2). For evolving data streams as illustrated in fig-
ure 2, the best choice for the adversary is to utilize online
estimation of local principal components for reconstruction.
The ability to estimating the local principal components of
theoriginal data streams depends on how the noise has been
added. For SCAN, we know that the principal component
directions are preserved, since the noise is added along their
direction (Theorem 1). In general, we may assume the noise
is small compared to the data—otherwise, the utility of the
perturbed data is too low to be useful. Then, tracking the
principal components of the perturbed streamsA∗ can give
a good estimate of the principal components of the original
streamsA. Formally,cov(A∗) ≈ cov(A).

Intuitively, SCOR reconstruction removes all the noise
orthogonal to the local principal components and inserts lit-
tle additional projection error, since local PCA can usually
track the data accurately. In other words, i.i.d. noise can
usually be successfully removed, provided that the streams
are correlated. However, the perturbation fromSCAN can-
not be removed at all since the the noise is distributed along
the “instantaneous” correlation in the streams.

Theorem 2. The reconstruction error ofSCOR on the per-
turbation fromSCAN is≈ σ2.

Proof. Formally, given a linear reconstructioñA = A∗R,
the privacy can be decomposed as

D(A, Ã) = ‖A− A∗R‖2
F

= ‖A− (A + E)R‖2
F

= ‖A(I− R) + ER‖2
F .

= ‖A(I− UUT)
︸ ︷︷ ︸

projection error

+ EUUT

︸ ︷︷ ︸
remaining error

‖2
F

whereR is a projection matrix, meaning thatR = UUT

with U ∈ R
N×k orthonormal. Since the subspaces tracked

by both SCOR and SCAN are the same, the remaining noise
is σ2, i.e., no noise is removed. Therefore,D(A, Ã) ≥ σ2

by the triangle inequality.

Note that the projection error for SCOR is small, pro-
vided that the data are locally correlated. Therefore, the
reconstruction error (i.e., privacy, as defined in Section 2.2)
of SCOR is approximatelyσ2, i.e., equal to the original dis-
crepancy. Moreover, whenσ2 is small compared to the orig-
inal data, other reconstruction methods will result in higher
error, due to the large projection error.

5 Dynamic autocorrelation
So far, we have presented the methods based on correla-

tion across many streams. Now we exploit another impor-
tant property, autocorrelation on a single stream and then
propose the corresponding perturbation and reconstruction.
Intuition: The noise added should mirror the dominant
trends in the series. Consider the following simple exam-
ples: If the stream always has a constant value, the right
way to hide this value is to add the same noise throughout
time. Any other noise can be easily filtered out by simple
averaging. The situation is similar for a linear trend (thisis
also an example that cannot be captured by Fourier). If the
stream is a sine wave, the right way to hide it is by adding
noise with the same frequency (but potentially a different
phase); anything else can be filtered out. Our algorithm is
the generalization, in a principled manner, of these notions.

For example, the green and blue curves in figure 3(b)
are the autocorrelated noise and the original stream, re-
spectively, where the noise follows the same trends as the
streams, over time. In comparison, figure 3(a) shows i.i.d.
noise, which can be easily filtered out. The goal is to find
a principled way to automatically determine what is the
“right” noise, which is “most similar” to the stream.
Connection to correlation: In the previous section, we
showed how to track the local statistical properties of theN -
dimensional sequence of the vectorsAt, indexed over time
t. More specifically, we track the principal subspace of this
matrix, thereby focusing on the most dominant (in a least-
squares sense) of these relationships. We subsequently add
noise that “mirrors” those relationships, making it indistin-
guishable from the original data.

Next, we will show that the same principles used to cap-
ture relationships across many attributes can be used to cap-
ture relationships of one attribute across time. In fact, there
is a natural way to move between the original time domain
and a high-dimensional sequence space, which is formal-
ized next. Thet-th windowof the time series streama(t) is
anh-dimensional point,

Wt := [a(t),a(t + 1), . . . ,a(t + h − 1)]T ∈ R
h.

0 1000 2000 3000 4000 5000 6000 7000 8000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

Data

Noise

(a) iid noise

0 1000 2000 3000 4000 5000 6000 7000 8000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

Data

Noise

(b) Autocorrelated noise

a = [1 2 3 4 5 6]T 1 2 3
 2 3 4
 3 4 5
 4 5 6

W =
W1

W2

W3

W4

 .1 -.1 .2
 -.1 .2 .3
 .2 .3 .1

 .3 .1 -.2*

E =
W* = W+E

a* = [1.1 1.9 3.2 4.3 5.1 5.8*]T

el er

(c) Streaming autocorrelation additive noise

Figure 3. Dynamic Autocorrelation

Thewindow matrixW has the windowsWt as rows. Thus,
W

j
i = a((i− 1)h + j) by construction. The space spanned

by the sequence of windowsWt is known as theh-th order
phase spaceof the seriesa(t) [16]. Subsequently, we can
essentially apply the same technique as before, usingW in
place ofA. All of the previous discussion and properties of
our algorithm can be directly transferred to the autocorre-
lation case. An example is shown in the top of figure 3(c).
However, there are some additional properties and issues
that need to be resolved.
Hankel Constraint: Notice that the window matrixW
is a Hankel matrix, i.e., theanti-diagonals are constants:
W

j
i = W

j−1
i−1 . Under the assumption that the series is

stationary, the autocovariance matrixWT W is, in expec-
tation iscirculant, i.e., it is symmetric with constant diag-
onals. Additionally, if we perform a batch eigen-analysis
on the global window matrix of a static series, the sample
autocovariance matrix computed from the actual data (i.e.,
WTW above) is also circulant. In this case, the eigenvec-
tors ofWTW essentially provide the same information as
the Fourier coefficients of the seriesa. In that sense, our
approach includes traditional Fourier analysis. If these as-
sumptions do not hold, the technique we employ is more ro-
bust and effective. Detailed discussion is beyond the scope
of this paper—interested readers may consult [16, 34, 18]
for more details.
Constraint on autocorrelated noise:Next, we address the
issues that arise from the fact thatW is a Hankel matrix.
Similarly, the noise matrixE has to be a Hankel matrix (see
figure 3(c) for an example). Similar to the correspondence
betweena andW, the noise matrixE has a corresponding
noise sequencee, such that

Et ≡ [e(t), e(t + 1), . . . , e(t + h − 1)]T ∈ R
h.

We will essentially use the same insight, thatEt has to lie in
the subspace ofU, but in a different way. Formally stated,
the residualEt − UUTEt must be zero, or

(I − UUT)Et ≡ QEt = 0, (1)

whereP = UUT is the projection operator onto the sub-
space ofU andQ = I − P = I − UUT is the projector

Algorithm 3 : SACAN

Input : Original valuea∗(t), utility σ2

Old subspaceU ∈ R
h×k,Λ ∈ Rk × k

Output : Perturbed valuea∗(t), new subspaceU,Λ
Construct windowWt−h+1 = [a(t−h+1), . . . ,a(t)]T1

UpdateU, V usingWt−h+12

everyk arriving valuesdo3

Let [wT

l | wT

r]
T ≡ Wt+h+14

Solve equation 2 to obtainer5

Rescaleer based onσ26

Perturbed valuesw∗
r = wr + er7

Publish valuesa∗(t−k+i−1) = w∗
r(i), 1 ≤ i ≤ k8

onto the orthogonal complement.
Assume that we have chosen the noise values up to time

t − k. Based on these and on the current estimate ofU,
we will determine the nextk noise values (wherek is the
principal subspace dimension)—the reason for determining
them simultaneously will become clear soon. Let

Et−h+1≡ [e(t−h+1), . . . , e(t−k) | e(t−k+1), . . . , e(t)]T

≡ [eTl | eTr]
T,

where| denotes elementwise concatenation (for example,
[1, 2 | 3, 4] results into two row vectors[12] and[34]. The
first block el ∈ R

h−k consists ofh − k known values,
whereas the second blocker ∈ R

k consists of thek un-
known noise values we wish to determine. Similarly de-
composingQ ≡ [Ql | Qr] into blocksQl ∈ R

h×(h−k) and
Qr ∈ R

h×k, we can rewrite equation 1 as

Qlel + Qrer = 0 or Qrer = −Qlel. (2)

This is a linear equation system withk variables andk un-
knowns. Since the principal subspace has dimensionk by
construction, the linear system is full-rank and can always
be solved. The bottom right of 3(c) highlights the knownel

and unknowner (with one principle componentk = 1).
The above equation cannot be applied for initial values

of the noise; we will use i.i.d. noise for those. Initially, we

Algorithm 4 : SACOR

Input : Perturbed valuea∗(t)
Old subspaceU ∈ R

N×k,Λ ∈ Rk × k
Output : Reconstructioña(t), new subspaceU,Λ
Construct windowWt−h+1 = [a(t−h+1), . . . ,a(t)]T1

UpdateU, V usingWt−h+12

Project onto est. eigenspacẽW = UUTWt−h+13

Reconstruction is the last element ofW̃, ã(t) = W̃h
t4

do not know anything about the patterns present in the sig-
nal, therefore i.i.d. noise is the best choice, since there are
no correlations yet. However, the adversary has also not
observed any correlations that can be leveraged to remove
that noise. The important point is that, as soon as correla-
tions become present, our method will learn them and use
them to intelligently add the noise, before the adversary can
exploit this information.

Figures 3(b) and 6 clearly show that our approach accu-
rately tracks the dominant local trends, over a wide range of
stream characteristics. Algorithm 3 shows the pseudocode.

The algorithm for reconstructing the original data is sim-
pler; we only need to project each windowWt onto the
current estimate ofU, exactly as we did for the correlation
case. The pseudocode is shown in Algorithm 4.

The analogues of Theorems 1 and 2 are summarized in
the following theorem (proof ommited for space).

Theorem 3. The perturbed stream from SACAN satisfies
D(A,A∗) = σ2 and preserves the eigenvectors of the au-
tocovariance matrix. The squared reconstruction error of
SACOR on this perturbed stream is approximatelyσ2.

Preserving the autocorrelation properties, in addition to
the privacy, is desirable, since several fundamental mining
operations, such as autoregressive modelling and forecast-
ing as well as periodicity detection [9], rely on them.

Multi-dimensional extension. If we wish to capture
both correlations as well as autocorrelations on multi-
dimensional streams, we can decompose the problem in a
fashion very similar to [32]. Details are beyond the scope
of this work, but we briefly present the main idea. We track
the eigenspace of the covariance matrix. However, instead
of using it only for adding noise, we also perform PCA on
the stream collection, to obtaink ≪ N streams of “hidden
variables.” Subsequently, we can apply our autocorrelation
tracking scheme independently on each of these uncorre-
lated (across dimension) streams. SPIRIT performs pre-
cisely the same decomposition of the problem (while con-
trolling the PCA approximation error) [32], except it does
so for multi-dimensional autoregression, rather than auto-
correlation tracking.

Data Streams Dimension Description
Chlorine [13] 4310×166 Environmental sensors
Lab [11] 7712×198 Room sensors
Stock [20] 8000×2 Stock price

Table 2. Three Real Data Sets

6. Experiment
We have implemented the proposed algorithms and study

their performance on real data streams. Specifically, we
show that: 1) in terms of preserving the input streams’ pri-
vacy, SCAN and SACAN outperform both i.i.d. noise as
well as noise added based on offline analysis; 2) SCOR and
SACOR achieve smaller reconstruction error than static, of-
fline algorithms; 3) all proposed algorithms have consider-
ably small computation and memory overhead.

6.1 Setup
The real-world data sets we use are summarized in table

2. Chlorine water quality in a drinking water distribution
system and Lab measures light, humidity, temperature and
voltage of sensors in the Intel Research Berkeley lab.

For simplicity, both discrepancy and reconstruction error
are always expressed relative to the energy of the original
streams, i.e.,D(A,A∗)/‖A‖F and D(A, Ã)/‖A‖F , re-
spectively. Equivalently, the streams are normalized to zero
mean and unit variance, which does not change their corre-
lation or autocorrelation properties. The random noise dis-
tribution is zero mean Gaussian, with variance determined
by the discrepancy parameter. Maximum discrepancy is
30%, as large noise will destroy the utility of the perturbed
data, making them practically useless for the mining appli-
cation. Without loss of generality and to facilitate presen-
tation, we assume that perturbation and reconstruction use
the same number of principal components—see discussion
in Section 6.5. Our prototype is implemented in Matlab and
all experiments are performed on an Intel P4 2.0GHz CPU.

6.2 Dynamic Correlation
The perturbation and reconstruction methods investi-

gated in our experiments are summarized in Table 3, where
“N” stands for noise and “R” for reconstruction. The of-
fline algorithms, for both perturbation and reconstruction,
are essentially the existing work on the static, relational
data model, using PCA on the entire stream history to iden-
tify correlations and add or remove noise accordingly. Ex-
cept otherwise specified, we set the number of principal
componentsk to 10. Although the offline algorithms may
not be applicable in a streaming setting due to large stor-
age requirements, they are included for comparison and we

Perturbation i.i.d-N offline-N online-N:SCAN
Reconstruction baseline offline-R offline-R:SCOR

Table 3. Perturbation/Reconstruction Method

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

i.i.d-N offline-N online-N

R
ec

o
n

st
ru

ct
io

n
 E

rr
o

r

SCAN
offline-R

(a) Reconstruction Error: SCAN vs.
offline-R

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of principal components k
R

ec
on

st
ru

ct
io

n
er

ro
r

i.i.d−N
offline−N
online−N

dash: offline−R
solid: SCAN

(b) Reconstruction Error: varyk

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
riv

ac
y

i.i.d−N
offline−N
SCAN
baseline

(c) Privacy vs. Discrepancy, online-R:
Lab data set

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
riv

ac
y

i.i.d−N
offline−N
SCAN
baseline

(d) Privacy vs. Discrepancy, online-R:
Chlorine data set

Figure 4. Privacy Preservation for Streams with Dynamic Correlations

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
riv

ac
y

i.i.d−N
SACAN
baseline

(a) Privacy vs. Discrepancy: Chlorine

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
riv

ac
y

i.i.d−N
SACAN
baseline

(b) Privacy vs. Discrepancy: Stock

Figure 5. Privacy vs. Discrepancy: Online
Reconstruction

show that, besides high overheads, their performance is sub-
optimal due to the time-evolving nature of streams. Finally,
baseline reconstruction is simply the perturbed data them-
selves (i.e., no attempt to recover the original data).

Reconstruction Error Figure 4(a) shows the reconstruc-
tion error of online and offline reconstruction, w.r.t all types
of noise. The figure presents results from Lab data with dis-
crepancy is set to10%. In all cases, SCOR clearly outper-
forms the offline method. The main reason is that offline-R
has considerable projection error for streams with dynami-
cally evolving correlation, whereas SCOR has almost neg-
ligible projection error and its reconstruction error is domi-
nated by the remaining noise. Similar phenomena were ob-
served for other discrepancy values. Threfore, online recon-
struction should be the candidate for measuring the privacy
of the perturbed data.

Effect of k The number of principal componentsk will
affect both the projection error and the remaining noise,
which in turn have an impact on the overall reconstruction
error. Figure 4(b) studies the effect ofk on both offline-
R and online-R on the Lab data with discrepancy fixed at
10%. For both approaches, reconstruction errors decrease
ask increases. Two interesting facts are reflected. First,
online-R requires smallerk to reach a “flat,” stable recon-
struction error. This is beneficial since both the computation
and memory cost increase in proportion tok, as we will see
in Section 6.4. Second, online-R achieves smaller recon-

struction error than offline-R, for all types of noise. This
reinforces our decision measure to the privacy of the per-
turbed data using online-R (SCOR).

Perturbation Performance Next, we measure the ability
of different perturbation methods to preserve privacy of data
streams with dynamic correlations. Results on the Lab and
Chlorine data are presented in figures 4(c) and 4(d). Clearly,
for both data streams, SCAN achieves the best privacy over
all discrepancy values. SCAN effectively achieves the best
privacy w.r.t. the allowed discrepancy. Compared to the
baseline method, online-R removes no noise at all from
SCAN.

6.3 Dynamic Autocorrelation
This section presents the results that demonstrate the cor-

rectness and effectiveness of our algorithms for data pertur-
bation in streams with autocorrelation. In all experiments,
except otherwise specified, the window sizeh is set to300
and the number of principal componentsk is10. Since there
is no previous work that explores autocorrelation in the of-
fline case for privacy preservation, we compare our method
against i.i.d. noise and we use the online reconstruction al-
gorithm proposed in this paper, SACOR, in order to mea-
sure privacy.

Effectiveness of SACANThe key idea of SACAN is to
track the data stream’s autocorrelation in an online fashion
and produce noise with similar autocorrelation. To illus-
trate the effectiveness of SACAN, we apply SACAN and
i.i.d. noise on different types of streams. We show the re-
sults from the Chlorine and Stock data sets in figure 6. The
discrepancy is set to10% for all experiments. We observe
from figure 6(a) and 6(c) that SACAN initally produces
i.i.d. noise but it is quickly able to estimate and track the
autocorrelation of the input stream. Hence, SACAN adds
random noise that closely follows the estimated autocorre-
lation. Intuitively, the noise generated by SACAN exhibits:
1) the same frequency as the input data stream; 2.) ampli-
tude that is determined by the discrepancy. Thus, since the
SACAN perturbation follows the same trend as the input
stream, it is hardly distinguishable or separable once added.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−3

−2

−1

0

1

2

3

4

Time

Data
Noise

(a) Chlorine: SACAN

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−3

−2

−1

0

1

2

3

Time

Data
Noise

(b) Chlorine: i.i.d

0 1000 2000 3000 4000 5000 6000 7000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

Data
Noise

(c) Stock: SACAN

0 1000 2000 3000 4000 5000 6000 7000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

Data
Noise

(d) Stock: i.i.d.

Figure 6. Online Random Noise for Stream with Autocorrelation

50 100 150 200
3

4

5

6

7

8

9

10

11

12

Number of streams

Ti
m

e
pe

r t
up

le
 (m

s)

SCAN on Lab Data Set

(a) Time vs. Number of Streams

5 10 15 20 25 30
5

6

7

8

9

10

11

12

Number of principal components

Ti
m

e
pe

r t
up

le
 (m

s)

SCAN on Lab Data Set 100 streams

(b) Time vs. Number of Principal
Components

Figure 7. Running Time of SCAN

The advantage of SACAN becomes clear when comparing
the results shown in figures 6(b) (SACAN) and 6(d) (i.i.d
noise).

Privacy of SACAN and Effectiveness of SACORUsing
SACOR for online reconstruction, more than1

3 of the i.i.d.
noise added to the Chlorine and Stock streams can be re-
moved. However, the noise produced by SACAN could not
be removed at all. Figure 5 demonstrates these results, for
varying discrepancy. The reconstruction error from SACOR
is used to measure privacy. Baseline is the discrepancy be-
tween perturbed and input streams (i.e., no attempt at re-
construction). Since SACAN produces noise that follows
the same trend as the input data stream, it is hard to remove
any such noise from the perturbed data.

6.4 Cost Analysis

The cost metrics include the computational require-
ments, measured in seconds, and the memory consump-
tion, measured in bytes. Figure 7 shows the running time of
SCAN on the Lab data set. Figure 7(a) investigates the ef-
fects of increasing the number of input streamsN while fix-
ing k = 10, whereas the second experiment studies the im-
pact of keeping different number of principal components
with N = 100 input streams. In both cases, we take the av-
erage processing time per tuple, consisting ofN elements,
one from each input stream. The running time of SCAN is
linear w.r.t. the number of input streams and almost linear
w.r.t. the number of principal components. This indicates
that it has good scalability. On average, SCAN is able to

process input from hundreds of streams in a few millisec-
onds. The same experiments performed for other online
algorithms (SCOR, SACAN, SACOR) lead to similar ob-
servations.

Memory consumption for all of our algorithms is domi-
nated by two factors: 1) the online estimation of local prin-
cipal components, either for correlation or for autocorre-
lation; 2) the number of tuples that need to be buffered.
For SCAN and SCOR no buffering is required. Hence,
memory consumption memory is required only for thek
local principal component directions, each of which is rep-
resented by anN -dimensional vector, whereN is the num-
ber of input streams. Therefore, the total memory required
is Nk|R|, where |R| is the floating point representation
size. For SACAN/SACOR, each principal direction is an
h-dimensional vector. Additionally, the lasth values need
to be buffered, since the entire window is needed to update
the principal direction estimates. Hence, the total memory
consumption ishk|R| + h|R|.

6.5 Discussion
The experimental evaluation validates the superiority of

our approaches. Essentially, for both correlations and au-
tocorrelation, our algorithms are able to produce random
noise that follows the same trend as the input streams, in a
online fashion. In addition, our algorithms have small com-
putation and memory overhead. Finally, we should point
out that, with relatively small amount of noise injected into
the original data streams, regardless of the type of the noise,
the principal components of the perturbed data will be a
good approximation of input data streams. Of course, there
are ways to mathematically infer the principal components
of the input data streams, given the perturbed data streams
and some knowledge of the noise properties, such as its dis-
tribution and variance. However, in this paper, we do not
consider releasing any knowledge about the noise. In fact,
we believe this is the right choice as the goal is to maxi-
mally preserve the privacy, while maintaining certain utility.
Releasing information about the noise might seriously com-
promise privacy. The assumption that injected noise cannot
be too large is automatically guaranteed by the utility re-
quirement of the target mining application. Hence, the esti-

mates for the number of dominant principal components at
reconstruction will be similar to that of perturbation. This
justifies using the same number of principal components for
both reconstruction and perturbation. However, differentk
in perturbation and reconstruction does not affect the trend
and phenomena in our experiments.

7. Conclusion
Data streams in the real world typically exhibit both sig-

nificant correlations as well as autocorrelation, thereby pro-
viding ample opportunities for adversaries to breach pri-
vacy. In this paper we develop the basic building blocks
for privacy preservation on numerical streams. In particu-
lar, we focus on the fundamental cases of correlation across
multiple streams and of autocorrelation within one stream.
We present methods to dynamically track both and subse-
quently add noise that “mirrors” these statistical properties,
making it indistinguishable from the original data. Thus,
our techniques prevent adversaries from leveraging these
properties to remove the noise and thereby breach privacy.
We provide both a mathematical analysis and experimen-
tal evaluation on real data to validate the correctness, effi-
ciency, and effectiveness of our algorithms. Our techniques
track the evolving nature of these relationships and achieve
much better results than previous static, global approaches.
Furthermore, to the best of our knowledge, autocorrelation-
based attacks have not been previously addressed.

References

[1] C. C. Aggarwal and P. S. Yu. A condensation approach to
privacy preserving data mining. InEDBT, 2004.

[2] D. Agrawal and C. C. Aggarwal. On the design and quan-
tification of privacy preserving data mining algorithms. In
PODS, 2001.

[3] R. Agrawal and R. Srikant. Privacy preserving data mining.
In SIGMOD, 2000.

[4] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving
olap. InSIGMOD, 2005.

[5] S. Agrawal and J. R. Haritsa. A framework for high-accuracy
privacy-preserving mining. InICDE, 2005.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. InPODS, 2002.

[7] E. Bertino, B. Ooi, Y. Yang, and R. Deng. Privacy and owner-
ship preserving of outsourced medical data. InICDE, 2005.

[8] J. Bethencourt, D. Song, and B. Waters. Constructions and
practical applications for private stream searching. InIEEE
Symposium on Security and Privacy, 2006.

[9] P. J. Brockwell and R. A. Davis.Introduction to Time Series
and Forecasing. Springer, 2nd edition, 2003.

[10] K. Chen and L. Liu. Privacy preserving data classification
with rotation perturbation. InICDM, 2005.

[11] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks.
In VLDB, 2005.

[12] W. Du and Z. Zhan. Using randomized response techniques
for privacy-preserving data mining. InSIGKDD, 2003.

[13] EPANET, 2002.http://www.epa.gov/ORD/NRMRL/
wswrd/epanet.html.

[14] A. Evfimevski, J. Gehrke, and R. Srikant. Limiting privacy
breaches in privacy preserving data mining. InPODS, 2003.

[15] A. Evfimievski, R. Srikant, R. Agarwal, and J. Gehrke. Pri-
vacy preserving mining of association rules. InSIGKDD,
2002.

[16] M. Ghil, M. Allen, M. Dettinger, K. Ide, D. Kondrashov,
M. Mann, A. Robertson, A. Saunders, Y. Tian, F. Varadi, and
P. Yiou. Advanced spectral methods for climatic time series.
Rev. Geophys., 40(1), 2002.

[17] S. Guha, D. Gunopulos, and N. Koudas. Correlating syn-
chronous and asynchronous data streams. InKDD, 2003.

[18] S. Haykin. Adaptive Filter Theory. Prentice-Hall, 4th edi-
tion, 2002.

[19] Z. Huang, W. Du, and B. Chen. Deriving private information
from randomized data. InSIGMOD, 2005.

[20] INET ATS, Inc. http://www.inetats.com/.
[21] I. T. Jolliffe. Principal Component Analysis. Springer, 2nd

edition, 2002.
[22] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On

the privacy preserving properties of random data perturba-
tion techniques. InICDM, 2003.

[23] D. Kifer and J. Gehrke. Injecting utility into anonymized
datasets. InSIGMOD, 2006.

[24] F. Li, C. Chang, G. Kollios, and A. Bestavros. Characteriz-
ing and explorting reference locality for data stream applica-
tions. InICDE, 2006.

[25] Y. Lindell and B. Pinkas. Privacy preserving data mining. In
CRYTO, 2000.

[26] K. Liu, H. Kargupta, and J. Ryan. Random Projection-Based
Multiplicative Data Perturbation for Privacy Preserving Dis-
tributed Data Mining.IEEE TKDE, 18(1), 2006.

[27] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-
subramaniam. l-diversity: Privacy beyond k-anonymity. In
ICDE, 2006.

[28] S. Muthukrishnan. Data streams: Algorithms and applica-
tions. Technical report, Computer Science Department, Rut-
gers University, 2003.

[29] E. U. on Privacy Protection, 2002.
http://europa.eu.int/eur-lex/pri/en/oj/
dat/2002/l 201/l 20120020731en00370047.pdf.

[30] A. V. Oppenheim and A. S. Wilsky.Signals and Systems.
Prentice-Hall, 1983.

[31] R. Ostrovsky and W. Skeith. Private searching on streaming
data. InCRYPTO, 2005.

[32] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern
discovery in multiple time-series. InVLDB, 2005.

[33] S. Papadimitriou and P. Yu. Optimal multi-scale patterns in
time series streams. InSIGMOD, 2006.

[34] R. O. Schmidt. Multiple emitter location and signal parame-
ter estimation.IEEE Trans. Ant. Prop., 34(3), 1986.

[35] L. Sweeney. k-anonymity: a model for protecting privacy.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5), 2002.

[36] K. Thearling. Data mining and privacy: A conflict in making.
In DS*, 1998.

[37] J. Vaidya and C. W. Clifton. Privacy prserving association
rule mining in vertically partitionaed data. InSIGKDD,
2002.

[38] K. Xiao and Y. Tao. Personalized privacy preservation.In
SIGMOD, 2006.

[39] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of
thousands of data streams in real time. InVLDB, 2002.

	. Introduction
	. Preliminaries
	Data Stream Model
	Discrepancy, Utility and Privacy
	Problem Formulation

	. Related Work
	. Privacy with Dynamic Correlations
	Dynamic autocorrelation
	. Experiment
	Setup
	Dynamic Correlation
	Dynamic Autocorrelation
	Cost Analysis
	Discussion

	. Conclusion

