Mobile OCR input: “Fully automatic” and reality
Recently I’ve been toying around with WordSnap OCR (project page, source code, app on Android Market), an app for OCR-based camera input on Android. In the process, I found out a few things about “smart” versus “fast”.
At least in data mining, “fully automatic” is an often unquestioned holy grail.  There are certainly several valid reasons for this, such as if you’re trying to scan huge collections of books such as this, or index images from your daily life like this.  In this case, you use all the available processing power to make as few errors as possible (i.e., maximize accuracy).
However, if the user is sitting right in front of your program, watching your algorithms and their output, things are a little different. No matter how smart your algorithm is, some errors will occur. This tends to annoy users. In that sense, actively involved users are a liability. However, they can also be an asset: since they’re sitting there anyway, waiting for results, you may as well get them really involved. If you have cheap but intelligent labor ready and willing, use it! The results will be better or, at the very least, no worse. Â Also, users tend to remember the failures. So, even if end results were similar on average, allowing users to correct failures as early as possible will make them happier.
Instead of making algorithms as smart as possible, the goal now is to make them as fast as possible, so that they produce near-realtime results that don’t have to be perfect; they just shouldn’t be total garbage. When I started playing with the idea for WordSnap, I was thinking how to make the algorithms as smart as possible.  However, for the reasons above, I soon changed tactics.
The rest of this post describes some of the successful design decisions but, Â more importantly, the failures in the balance between “automatic” and “realtime guidance”. The story begins with the following example image:
Incidentally, this image was the inspiration for WordSnap: I wanted to look up “inimical” but I was too lazy to type. Also, for the record, WordSnap uses camera preview frames, which are semi-planar YUV data at HVGA resolution (480×320). This image is a downsampled (512×384) full-resolution photograph taken with the G1 camera (2048×1536); most experiments here were performed before WordSnap existed in any usable form. Finally, I should point out that OCR isn’t really my area; what I describe below is based on common sense rather than knowledge of prior art, although just before writing this post I did try a quick review of the literature.